Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 2 | 157-165
Tytuł artykułu

Efficient simulation of unidirectional pulse propagation in high-contrast nonlinear nanowaveguides

Treść / Zawartość
Warianty tytułu
Języki publikacji
This work demonstrates an improved method to simulate long-distance femtosecond pulse propagation in highcontrast nanowaveguides. Different from typical beam propagation methods, the foundational tool here is capable of simulating strong spatiotemporal waveform reshaping and extreme spectral dynamics. Meanwhile, the ability to fully capture effects due to index contrast in the transverse direction is retained, without requiring a decomposition of the electric field in terms of waveguide modes. These simulations can be computationally expensive, however, so cost is reduced in the improved method by considering only the waveguide core. Fields in the cladding are then properly accounted for through a boundary condition suitable for the case of total internal reflection.
  • College of Optical Sciences, University of Arizona,
    1630 E. University Blvd., 85741 Tucson, AZ, USA,
  • Department of Physics, Constantine the Philosopher
    University, 94974 Nitra, Slovakia
  • [1] J. Andreasen and M. Kolesik, Nonlinear propagation of light in structured media: Generalized unidirectional pulsepropagation equations. Phys. Rev. E, 86(3), 036706, (2012).[WoS][Crossref]
  • [2] J. Andreasen and M. Kolesik, Midinfrared femtosecond laser pulse filamentation in hollow waveguides: A comparisonof simulation methods. Phys. Rev. E, 87(5), 053303, (2013).[WoS][Crossref]
  • [3] C. L. Arnold, S. Akturk, M. Franco, A. Couairon, and A. Mysyrowicz, Compression of ultrashort laser pulses in planarhollow waveguides: a stability analysis. Opt. Express, 17(13), 11122–11129, (2009).[WoS][Crossref][PubMed]
  • [4] C. L. Arnold, B. Zhou, S. Akturk, S. Chen, A. Couairon, and A. Mysyrowicz, Pulse compression with planar hollowwaveguides: a pathway towards relativistic intensity with table-top lasers. New J. Phys., 12(7), 073015, (2010).[WoS][Crossref]
  • [5] L Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Ultrashort filaments of light in weakly ionized opticallytransparent media. Rep. Prog. Phys., 70(10), 1633–1713, (2007).[Crossref][WoS]
  • [6] L. Caspani, D. Duchesne, K. Dolgaleva, S. J. Wagner, M. Ferrera, L. Razzari, et al., Optical frequency conversion inintegrated devices. J. Opt. Soc. Am. B, 28(12), A67–A82, (2011).[Crossref]
  • [7] S. L. Chin, Femtosecond Laser Filamentation. Springer, New York, (2009).
  • [8] A. Couairon and A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep., 441(2-4), 47–189,(2007).[Crossref]
  • [9] A. Couairon, E. Brambilla, T. Corti, D. Majus, O. J. Ramírez-Góngora, and M. Kolesik, Practitioner’s guide to laserpulse propagation models and simulation. Eur. Phys. J. Special Topics, 199(1), 5–76, (2011).[WoS]
  • [10] C. Courtois, A. Couairon, B. Cros, J. R. Marquès, and G. Matthieussent, Propagation of intense ultrashort laserpulses in a plasma filled capillary tube: Simulations and experiments. Phys. Plasmas, 8(7), 3445–3456, (2001).[Crossref]
  • [11] D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, et al., Supercontinuum generationin a high index doped silica glass spiral waveguide. Opt. Express, 18(2), 923–930, (2010).[Crossref]
  • [12] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Broad-band optical parametricgain on a silicon photonic chip. Nature, 441(7096), 960–963, (2006).
  • [13] M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, Nonlinear optics in photonic nanowires. Opt. Express, 16(2), 1300–1320, Jan (2008).[PubMed][Crossref]
  • [14] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, Broad-band continuous-wave parametric wavelengthconversion in silicon nanowaveguides. Opt. Express, 15(20), 12949–12958, (2008).
  • [15] X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, and B. Luther-Davies, Supercontinuum generation in the midinfraredfrom a dispersion-engineered As2S3 glass rib waveguide. Opt. Lett., 37(18), 3870–3872, (2012).[WoS][Crossref]
  • [16] J. H. Greene and A. Taflove, General vector auxiliary differential equation finite-difference time-domain method fornonlinear optics. Opt. Express, 14(18), 8305–8310, (2006).[PubMed][Crossref]
  • [17] R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, Ultrabroadband supercontinuumgeneration in a CMOS-compatible platform. Opt. Lett., 37(10), 1685–1687, (2012).[Crossref]
  • [18] R. J. Hawkins, Propagation properties of single-mode dielectric waveguide structures: a path integral approach.Appl. Opt., 26(7), 1183–1188, (1987).[PubMed][Crossref]
  • [19] S. T. Hendow and S. A. Shakir, Recursive numerical solution for nonlinear wave propagation in fibers and cylindricallysymmetric systems. Appl. Opt., 25(11), 1759–1764, (1986).[PubMed][Crossref]
  • [20] P. Kinsler, Optical pulse propagation with minimal approximations. Phys. Rev. A, 81(1), 013819, (2010).[Crossref][WoS]
  • [21] P. Kinsler, Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses.Phys. Rev. A, 81(2), 023808, (2010).[Crossref][WoS]
  • [22] M. Kolesik and J. V. Moloney, Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectionalequations. Phys. Rev. E, 70(3), 036604, (2004).[Crossref]
  • [23] M. Kolesik, J. V. Moloney, and M. Mlejnek, Unidirectional optical pulse propagation equation. Phys. Rev. Lett., 89(28), 283902, (2002).[PubMed][Crossref]
  • [24] M. Kolesik, P. T. Whalen, and J. V. Moloney, Theory and simulation of ultrafast intense pulse propagation inextended media. IEEE J. Sel. Top. Quantum Electron., 18(1), 494–506, (2012).[WoS][Crossref]
  • [25] H. M. Masoudi and M. S. Akond, Efficient iterative time-domain beam propagation methods for ultra short pulsepropagation: Analysis and assessment. J. Lightwave Technol., 29(16), 2475–2481, (2011).[WoS][Crossref]
  • [26] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, Octave-spanning frequency comb generationin a silicon nitride chip. Opt. Lett., 36(17), 3398–3400, (2011).[Crossref]
  • [27] J. V. Roey, J. van der Donk, and P. E. Lagasse, Beam-propagation method: analysis and assessment. J. Opt. Soc.Am., 71,803–810, (1981).[Crossref]
  • [28] K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, et al., Modelocking and femtosecond pulsegeneration in chip-based frequency combs. Opt. Express, 21(1), 1335–1343, (2013).[Crossref]
  • [29] J. Shibayama, M. Muraki, J. Yamauchi, and H. Nakano, Comparative study of several time-domain methods foroptical waveguide analyses. J. Lightwave Technol., 23(7), 2285, (2005).[Crossref]
  • [30] G. Tempea and T. Brabec, Theory of self-focusing in a hollow waveguide. Opt. Lett., 23(10), 762–764, (1998).[Crossref]
  • [31] D. Yevick and B. Hermansson, New formulations of the matrix beam propagation method: Application to ribwaveguides. IEEE J. Quantum Electron., 25(2), 221–229, (1989).[Crossref]
  • [32] L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, On-chip two-octave supercontinuumgeneration by enhancing self-steepening of optical pulses. Opt. Express, 19(12), 11584–11590, (2011).[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.