PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 2 | 10-29
Tytuł artykułu

Vibrational properties of nanographene

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The eigenmodes and the vibrational density of states of the ground state configuration of graphene clusters are calculated using atomistic simulations. The modified Brenner potential is used to describe the carbon-carbon interaction and carbon-hydrogen interaction in case of H-passivated edges. For a given configuration of the C-atoms the eigenvectors and eigenfrequencies of the normal modes are obtained after diagonalisation of the dynamical matrix whose elements are the second derivative of the potential energy. The compressional and shear properties are obtained from the divergence and rotation of the velocity field. For symmetric and defective clusters with pentagon arrangement on the edge, the highest frequency modes are shear modes. The specific heat of the clusters is also calculated within the harmonic approximation and the convergence to the result for bulk graphene is investigated.
Wydawca
Rocznik
Tom
2
Strony
10-29
Opis fizyczny
Daty
otrzymano
2012-11-07
poprawiono
2013-01-02
zaakceptowano
2013-01-17
online
2013-01-25
Twórcy
autor
  • Department of Physics,
    University of Antwerp, Groenenborgerlaan 171,
    B-2020 Antwerpen, Belgium
Bibliografia
  • J. Zimmermann, P. Pavone, and G. Cuniberti. Vibrational modes and low-temperature thermal properties of grapheneand carbon nanotubes: Minimal force-constant model. Phys. Rev. B, 78 (4), 045410 (2008).[Crossref]
  • J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón. Phonon Dispersion in Graphite. Phys. Rev. Lett.,92 (7), 075501 (2004).
  • J. Zhou and J. Dong. Vibrational property and Raman spectrum of carbon nanoribbon. Appl. Phys. Lett., 91, 173108(2007).[WoS]
  • R. Gillen, M. Mohr, C. Thomsen, and J. Maultzsch. Vibrational properties of graphene nanoribbons by first-principlescalculations. Phys. Rev. B, 80, 155418 (2009).
  • G. Gao, T. Çaˇgin, and W. A. Goddard III. Energetics, structure, mechanical and vibrational properties of single-walledcarbon nanotubes. Nanotechnology, 9, 184-191 (1998).[Crossref]
  • R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus. Raman intensity of single-wall carbonnanotubes. Phys. Rev. B, 57 (7), 4145 (1998).[Crossref]
  • M. Menon, E. Richter, and K. R. Subbaswamy. Structural and vibrational properties of fullerenes and nanotubes ina nonorthogonal tight−binding scheme. J. Chem. Phys., 104 (15), 5875-5882 (1996).
  • B. Barszcz, B. Laskowska, A. Graja, E. Y. Park, T. Kim, and K. Lee. Vibrational properties of two fullerene-thiophenebaseddyads. Synth. Met., 159 (23-24), 2539-2543 (2009).[WoS]
  • E. Malolepsza, H. A. Witek, and S. Irle. Comparison of Geometric, Electronic, and Vibrational Properties for Isomersof Small Fullerenes C20−C36 . J. Phys. Chem. A., 111 (29), 6649 (2007).
  • S. Bera, A. Arnold, F. Evers, R. Narayanan, and P. W¨olfle. Elastic properties of graphene flakes: Boundary effectsand lattice vibrations. Phys. Rev. B, 82 (19), 195445 (2010).[WoS]
  • B. K. Agrawal, S. Agrawal, and S. Singh. Structural and vibrational properties of small carbon clusters. J. Nanosci.Nanotechnol., 5 (3), 442-448 (2005).
  • N. Breda, G. Onida, G. Benedek, G. Col`o, and R. A. Broglia. Bond-charge-model calculation of vibrational propertiesin small carbon aggregates: From spherical clusters to linear chains. Phys. Rev. B, 58 (16), 11000 (1998).[Crossref]
  • R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus. Raman Spectroscopy of Graphene andCarbon Nanotubes. Advances in Physics, 60 (3), 413-550 (2011).[WoS][Crossref]
  • A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and Cinzia Casiraghi. Probing theNature of Defects in Graphene by Raman Spectroscopy. Nano Lett., 12 (8), 3925-3930 (2012).[WoS][PubMed][Crossref]
  • A. K. Geim and K. S. Novoselov, The Rise of Graphene, Nat. Mater., 6), 183-191 (2007).
  • A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A.Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus. Diameter-Selective Raman Scattering from VibrationalModes in Carbon Nanotubes. Science, 275 (5297), 187-190 (1997).
  • L. Venkataraman. Massachusetts Institute of Technology, PhD-thesis(1993).
  • R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus. Phonon Modes in Carbon Nanotubules. Chem.Phys. Lett., 209 (1-2), 77-82 (1993).
  • M. Tommasini, C. Castiglioni, and G. Zerbi. Raman Scattering of Molecular Graphene. Phys. Chem. Chem. Phys.,11), 10185-10194 (2009).[PubMed][Crossref]
  • M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito. Studying disorder ingraphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys., 9, 1276-1291 (2007).[PubMed][Crossref][WoS]
  • A. G. Ryabenko, N. A. Kiselev, J. L. Hutchison, T. N. Moroz, S. S. Bukalov, L. A. Mikhalitsyn, et al. Spectral propertiesof single-walled carbon nanotubes encapsulating fullerenes. Carbon, 45 (7), 1492-1505 (2007).[Crossref][WoS]
  • K. H. Michel and B. Verberck. Theory of the evolution of phonon spectra and elastic constants from graphene tographite. Phys. Rev. B, 78 (8), 085424 (2008).[Crossref]
  • M. Mohr, J. Maultzsch, E. Dobardžic, S. Reich, I. Miloševic, M. Damnjanovic, et al. Phonon dispersion of graphiteby inelastic x-ray scattering. Phys. Rev. B, 76 (3), 035439 (2007).
  • B. Partoens and F. M. Peeters. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B,74 (7), 075404 (2006).[Crossref]
  • N. Mounet and N. Marzari. First-principles determination of the structural, vibrational and thermodynamic propertiesof diamond, graphite, and derivatives. Phys. Rev. B, 71 (20), 205214 (2005).
  • W. An, Y. Gao, S. Bulusu, and X. C. Zeng. Ab initio calculation of bowl, cage, and ring isomers of C20 and C20− . J.Chem. Phys., 122 (20), 204109-204116 (2005).
  • D. P. Kosimov, A. A. Dzhurakhalov, and F. M. Peeters. Carbon clusters: From ring structures to nanographene. Phys.Rev. B, 81 (19), 195414 (2010).[Crossref][WoS]
  • D. P. Kosimov, A. A. Dzhurakhalov, and F. M. Peeters. Theoretical study of the stable states of small carbon clustersCn (n=2-10). Phys. Rev. B, 78 (23), 235433 (2008).[WoS][Crossref]
  • M. Ezawa. Metallic graphene nanodisks: electric and magnetic properties. Phys. Rev. B, 76 (24), 245415 (2007).[WoS]
  • J. Fernandez-Rossier and J. J. Palacios. Magnetism in graphene nanoislands. Phys. Rev. Lett., 99 (17), 177204(2007).[Crossref]
  • D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott. A second-generation reactiveempirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter, 14 (4),783-802 (2002).[Crossref]
  • J. D. Louck. Exact normal modes of oscillation of a linear chain of identicalatoms. Am. J. Phys., 30, 585 (1962).
  • J. H. Eggert. One-dimensional lattice dynamics with periodic boundary conditions: An analog demonstration. Am.J. Phys., 65, 108 (1997).
  • T. Zhou, C. Xu, X. Zhang, C. Cheng, L. Chen, and Y. Xu. A simple theoretical model for ring and nanotube radialbreathing mode. Acta Phys. -Chim. Sin., 24 (9), 1579-1583 (2008).[WoS][Crossref]
  • M. Vandescuren, P. Hermet, V. Meunier, L. Henrard, and Ph. Lambin. Theoretical study of the vibrational edgemodes in graphene nanoribbons. Phys. Rev. B, 78 (19), 195401 (2008).[Crossref]
  • V. A. Schweigert and F. M. Peeters. Spectral properties of classical two-dimensional clusters. Phys. Rev. B, 51 (12),7700 (1995).[Crossref]
  • L. X. Benedict, S. G. Louie, and M. L. Cohen. Heat capacity of carbon nanotubes. Solid State Commun., 100 (3),177-179 (1996).
  • A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova. Theory of the vibrational frequency spectra of solids.In: H. E. Ehrenreich, F. Seitz, and D. Turnbull (ed.). Solid State Physics, Academic, New York, pp. 129-188 (1971).
  • J. Zimmermann, P. Pavone, and G. Cuniberti. Vibrational modes and low-temperature thermal properties of grapheneand carbon nanotubes: Minimal force-constant model. Phys. Rev. B, 78 (4), 045410 (2008).[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_nsmmt-2013-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.