PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 2 | 1-9
Tytuł artykułu

Multidisciplinary approaches in theory, applications and modeling of nanoscale systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This editorial provides an overview of both fundamental and applied research areas covered by the journal of Nanoscale Systems: Mathematical Modeling, Theory and Applications (NanoMMTA), as well as of articles published in the journal inaugural volume. The unique feature of NanoMMTA is its focus on the interface between the study, development, and application of systems at the nanoscale with theoretical methods and experimental techniques on the one hand and mathematical, statistical, and computational tools on the other. NanoMMTA is the first international, interdisciplinary, peer-reviewed journal focusing specifically on this interface. This emerging multidisciplinary field at the interface of mathematical modeling, nanoscience and nanotechnology includes applications and advancements of these tools in all of the disciplines facing the challenges associated with the nanoscale systems.
Kategorie tematyczne
Wydawca
Rocznik
Tom
2
Strony
1-9
Opis fizyczny
Daty
otrzymano
2012-12-21
zaakceptowano
2013-01-16
online
2013-01-25
Twórcy
  • MNeT Laboratory, Faculty of Science,
    Wilfrid Laurier University,
    75 University Avenue West,
    Waterloo, ON, Canada N2L 3C5, rmelnik@wlu.ca
Bibliografia
  • A. V. Antoniouk and R.V.N. Melnik. Scientific frontiers at the interface of mathematics and life sciences. Mathematicsand Life Sciences, De Gruyter, Berlin, New York, pp.1–16 (2012).
  • R.V.N. Melnik and I. S. Kotsireas, Interconnected challenges and new perspectives in applied mathematical andcomputational sciences. Advances in Applied Mathematics, Modeling, and Computational Science, Fields InstituteCommunications 66, Springer, New York, pp. 1–10 (2013).
  • K. Tai, M. Dao, S. Suresh, A. Palazoglu, and C. Ortiz. Nanoscale Heterogeneity Promotes Energy Dissipation inBone. Nature Materials, 6, 454–462, (2007).
  • L. Adler-Abramovich, D. Aronov, P. Beker, M. Yevnin, S. Stempler, L. Buzhansky, et al. Self-assembled arrays ofpeptide nanotubes by vapour deposition. Nature Nanotechnology, 4 (12), 849–854 (2009).
  • H. Q. Shi, A.S. Barnard, and I.K. Snook. Quantum mechanical properties of graphene nano-flakes and quantum dots.Nanoscale, 4 (21), 6761–6767 (2012), DOI: 10.1039/c2nr31354e.
  • J. Zivkovic and B. Tadic. Nanonetworks: The Graph Theory Framework for Modeling Nanoscale Systems. NanoscaleSystems: Mathematical Modeling, Theory and Applications, 2, 30 (2013), ISSN (Online) 2299-3290, DOI:10.2478/nsmmt-2013-0003.
  • N. O. Weiss, H.L. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, et al. Graphene: An Emerging Electronic Material.Advanced Materials, 24 (43), 5782–5825 (2012), DOI: 10.1002/adma.201201482.
  • L. Cademartiri, K. J. M. Bishop, P.W. Snyder, and G.A. Ozin. Using shape for self-assembly. Philosophical Transactionsof the Royal Society A - Mathematical Physical and Engineering Sciences, 370 (1969), Special Issue: SI,2824–2847 (2012), DOI: 10.1098/rsta.2011.0254.
  • R.V.N. Melnik and A. Povitsky, editors. Modelling coupled and transport phenomena in nanotechnology. Journal ofComputational and Theoretical Nanoscience, 3 (4) (2006).
  • S. Prabhakar, R. V. N. Melnik, P. Neittaanmaki, and T. Tiihonen, Coupled electromechanical effects in wurtzitequantum dots with wetting layers in gate controlled electric fields: The multiband case. Physica E: Low-dimensionalSystems and Nanostructures 46, 97–104 (2012).
  • S. Prabhakar, R.V.N. Melnik, P. Neittaanmaki, and T. Tiihonen, Coupled magneto-thermo-electromechanical effectsand electronic properties of quantum dots. Journal of Computational and Theoretical Nanoscience 10, 550–563(2013).
  • P. Tiwary and A. van de Walle. Hybrid deterministic and stochastic approach for efficient atomistic simulations atlong time scales. Physical Review B, 84 (10), 100301 (2011) DOI: 10.1103/PhysRevB.84.100301.
  • M. Paliy, R. Melnik, and B. A. Shapiro. Coarse-graining RNA nanostructures for molecular dynamics simulations.Physical Biology, 7 (3), 036001 (2010).
  • A. Cambi and D.S. Lidke. Nanoscale Membrane Organization: Where Biochemistry Meets Advanced Microscopy.ACS Chemical Biology, 7 (1), 139–149 (2012), DOI: 10.1021/cb200326g.
  • D. R. Han, S. Pal, Y. Liu, H. Yan. Folding and cutting DNA into reconfigurable topological nanostructures. NatureNanotechnology, 5 (10), 712–717 (2010), DOI: 10.1038/nnano.2010.193.
  • D.N. Kim, F. Kilchherr, H. Dietz, and M. Bathe. Quantitative prediction of 3D solution shape and flexibility ofnucleic acid nanostructures. Nucleic Acids Research, 40 (7), 2862–2868 (2012), DOI: 10.1093/nar/gkr1173.
  • M. Gu, K. Wiesner, E. Rieper, and V. Vedral. Quantum mechanics can reduce the complexity of classical models.Nature Communications, 3, 762 (2012), DOI: 10.1038/ncomms1761.
  • Y. F. Dufrene and M.F. Garcia-Parajo. Recent progress in cell surface nanoscopy: Light and force in the near-field.Nano Today, 7 (5), 390–403 (2012), DOI: 10.1016/j.nantod.2012.08.002.
  • F.M. Borodich, B.A. Galanov, S.N. Gorb, M.Y. Prostov, Y.I. Prostov, and Suarez-Alvarez, M.M. An inverse problemfor adhesive contact and non-direct evaluation of material properties for nanomechanics applications. Nanoscale Systems: Mathematical Modeling, Theory and Applications, 1, 80–92 (2012), ISSN (Online) 2299-3290, DOI:10.2478/nsmmt-2012-0006.
  • P. R. Srinivas, M. Philbert, T.Q. Vu, Q. R. Huang, J.L. Kokini, E. Saos, et al. Nanotechnology Research: Applicationsin Nutritional Sciences. Journal of Nutrition, 140 (1), 119-124 (2010), DOI: 10.3945/jn.109.115048.
  • C. Y. Fong, M. Shaughnessy, L. Damewood, and L. H. Yang. Theory, Experiment and Computation of Half Metalsfor Spintronics: Recent Progress in Si-based Materials. Nanoscale Systems: Mathematical Modeling, Theory andApplications, 1, 1–22 (2012), ISSN (Online) 2299-3290, DOI: 10.2478/nsmmt-2012-0001.
  • H.A. Thorolfsson, A. Manolescu, D.C. Marinescu, and V. Gudmundsson. Coulomb interaction effects on the spinpolarization and currents in quantum wires with spin orbit interaction. Nanoscale Systems: Mathematical Modeling,Theory and Applications, 1, 23–37 (2012), ISSN (Online) 2299-3290, DOI: 10.2478/nsmmt-2012-0002.
  • A. Sellitto and F.X. Alvarez. Non-Fourier heat removal from hot nanosystems through graphene layer. NanoscaleSystems: Mathematical Modeling, Theory and Applications, 1, 38–47 (2012), ISSN (Online) 2299-3290, DOI:10.2478/nsmmt-2012-0003.
  • A. Sowa. Signals generated in memristive circuits. Nanoscale Systems: Mathematical Modeling, Theory and Applications,1, 48–57 (2012), ISSN (Online) 2299-3290, DOI: 10.2478/nsmmt-2012-0004.
  • J.-L. Liu. Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation.Nanoscale Systems: Mathematical Modeling, Theory and Applications, 1, 58–79 (2012), ISSN (Online)2299-3290, DOI: 10.2478/nsmmt-2012-0005.
  • A. Borzi. Quantum optimal control using the adjoint method. Nanoscale Systems: Mathematical Modeling, Theoryand Applications, 1, 93–111 (2012), ISSN (Online) 2299-3290, DOI: 10.2478/nsmmt-2012-0007.
  • F.X. Alvarez, V.A. Cimmelli, D. Jou, A. Sellitto. Mesoscopic description of boundary effects in nanoscale heat transport.Nanoscale Systems: Mathematical Modeling, Theory and Applications, 1, 112–142 (2012), ISSN (Online) 2299-3290, DOI: 10.2478/nsmmt-2012-0008.
  • W. Hoiles, V. Krishnamurthy, B. Cornell. Mathematical Models for Sensing Devices Constructed out of ArtificialCell Membranes. Nanoscale Systems: Mathematical Modeling, Theory and Applications, 1, 143–171 (2012), ISSN(Online) 2299-3290, DOI: 10.2478/nsmmt-2012-0009.
  • N. Ebrahimi, M. Shehadeh, K. McCullough. Bayesian Analysis for Robust Synthesis of Nanostructures. NanoscaleSystems: Mathematical Modeling, Theory and Applications, 1, 172–186 (2012), ISSN (Online) 2299-3290, DOI:10.2478/nsmmt-2012-0010.
  • S. K. Singh and F. M. Peeters. Vibrational Properties of Nanographene Nanoscale Systems: Mathematical Modeling,Theory and Applications, 2, 10–29 (2013), ISSN (Online) 2299-3290, DOI: 10.2478/nsmmt-2013-0002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_nsmmt-2013-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.