PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 1 | 172-186
Tytuł artykułu

Bayesian Analysis for Robust Synthesis of Nanostructures

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanomaterials, because of their unique properties such as extremely small size and increased ratio of surface area to volume, have a great potential in many industrial applications that involve electronics, sensors, solar cells, super-strong materials, coatings, drug delivery, and nanomedicine. They have the potential also to improve the environment by direct applications of these materials to detect, prevent and remove pollutants. While nanomaterials present seemingly limitless possibilities, they bring with them new challenges. Among them is the precise control of the morphology of nanomaterials, which is extremely critical to the development of advanced nanodevices with various functionalities. The one-dimensional nanostructures of Cadmium Selenide (CdSe) have been found to represent morphologies of nanowires, nanobelts, and nanosaws, however, their synthesis is by trial and error. Predictive modeling and control methods are essential to process yield and productivity improvement. The process yield (response) is a vector whose elements correspond to the number of appearances of the different types of nanostructures, namely nanosaws, nanowires, and nanobelts. The goal in this paper is to apply existing Bayesian methodologies to describe the growths of these nanostructures in terms of process variables and to predict the probability of transition from one nanostructure to another when changes are made to one or more process variables. We also propose a Bayesian algorithm to identify the optimal process conditions that maximize the predicted probability of each type of nanostructure.
Twórcy
  • Division of Statistics, Northern Illinois University,
    DeKalb, IL 60115, USA
  • Division of Statistics, Northern Illinois University,
    DeKalb, IL 60115, USA
  • Division of Statistics, Northern Illinois University,
    DeKalb, IL 60115, USA
Bibliografia
  • B. Bhushan, Handbook of Nanotechnology (second edition). Springer, New York (2007).
  • A. Mansoori, P. Araujo, E. Araujo, Diamondoid Molecules with Applications in Biomedicine, Materials Science,Nanotechnology & Petroleum Science. World Sci Pub Co, Hackensack, NJ (2012).
  • Khataee, A., Mansoori, A. Nanostructured Titanium Dioxide Materials: Properties, Preparation and Applications.World Sci Pub Co, Hackensack, NJ (2012).
  • C. Ma, Z. Wang, Road Map for Controlled Synthesis of CdSe Nanostructures. Advanced Materials 17, 1 (2005).
  • L. Zhang, Y. Jia, S. Wang, Z. Li, C. Ji, J. Wei, H. Zhu, K. Wang, D. Wu, E. Shi, Y. Fang, and A. Cao, Carbon Nanotubeand CdSe Nanobelt Schottky Junction Solar Cells. Nano Letter 10, 3583 (2010).[WoS]
  • T. Dasgupta, C. Ma, V. Roshan Joseph, Z. L. Wang, C. F. J. Wu, Statistical Modeling and Analysis for RobustSynthesis of Nanostructures. Journal of the American Statistical Association 103, 594 (2008).[WoS][Crossref]
  • M. C. Kennedy, and A. O’Hagan, Bayesian calibration of computer models (with discussion). Journal of RoyalStatistical Society-Series B 63, 425 (2001).
  • C. S. Reese, A. G. Wilson, M. Hamada, H. F. Martz, and K. J. Ryan, Integrated analysis of computer and physicalexperiments. Technometrics 46, 153 (2004).[Crossref]
  • M. J. Bayarri, J.O. Berger, R. Paulo, J. Sacks, J. Cafeo, J. Cavendish, C. H. Lin, and J. Tu, A framework for validationof computer models. Technometrics 49, 138 (2007).[Crossref][WoS]
  • Q. Huang, Physics-driven Bayesian hierarchical modeling of the nanowire growth process at each scale. IIE Transactions43, 1 (2011).[WoS]
  • P. McCullagh, J.A. Nelder, Generalized Linear Models. Chapman and Hall: London. (mathematical statistics ofgeneralized linear model) (1989).
  • C. P. Robert, G. Casella, Monte Carlo Statistical Methods. Second edition. Springer, New York (2005).
  • K. Imai, G. King, O. Lau, Toward A Common Framework for Statistical Analysis and Development. Journal ofComputational and Graphical Statistics 17, 892 (2008).[WoS][Crossref]
  • K. Imai, G. King, O. Lau, Zelig: Everyone’s Statistical Software. http://gking.harvard.edu/zelig (2009).
  • D. J. Spiegelhalter, A. Thomas, N. Best, D. and Lunn, WinBUGS user manual [online], http://www.mrc-bsu.cam.ac.uk/bugs.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_nsmmt-2012-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.