Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 1 | 38-47
Tytuł artykułu

Non-Fourier heat removal from hot nanosystems through graphene layer

Treść / Zawartość
Warianty tytułu
Języki publikacji
Nonlocal effects on heat transport beyond a simple Fourier description are analyzed in a thermodynamical model. In the particular case of hot nanosystems cooled through a graphene layer, it is shown that these effects may increase in a ten percent the amount of removed heat, as compared with classical predictions based on the Fourier law.
  • Department of Mathematics, Computer Science and Economics, University of Basilicata, Campus Macchia Romana, 85100 Potenza, Italy
  • Department of Physics, Autonomous University of Barcelona, 08193 Bellaterra, Catalonia, Spain
  • C. C. Ackerman and R. A. Guyer. Temperature pulses in dielectric solids. Annals of Physics 50, 128–185 (1968).
  • F. X. Alvarez, D. Jou, and A. Sellitto. Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (2009) [WoS]
  • F. X. Alvarez, D. Jou, and A. Sellitto. Phonon boundary effects and thermal conductivity of rough concentric nanowires. J. Heat Transfer 133, 022402 (2011) [WoS]
  • A. Balandin and K. L. Wang. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149 (1998)
  • A. Balandin and K. L. Wang. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544–1549 (1998)
  • A. A. Balandin. Chill Out. IEEE Spectrum, pages 35–39 (2009)
  • A. A. Balandin. Thermal properties of graphene and nanostructured carbon materials. Nature Materials 10, 569–581 (2011) [PubMed][WoS]
  • A. A. Balandin, S. Ghosh, W. Baoand, I. Calizo, D. Teweldebrhan, F. Miao, and C.-N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008) [WoS][PubMed][Crossref]
  • G. Bergmann. Conductance of a perfect thin film with diffuse surface scattering. Phys. Rev. Lett. 94, 106801 (2005) [PubMed]
  • D. Burnett. The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. London Math. Soc. 40, 382–435 (1935)
  • B.-Y. Cao and Z.-Y. Guo. Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (2007) [WoS]
  • C. Cattaneo. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena, 3: 83–101 (1948)
  • S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, London (1970)
  • G. Chen. Nanoscale Energy Transport and Conversion - A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford (2005)
  • V. A. Cimmelli. Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)
  • Y. Dong and Z.-Y. Guo. Entropy analyses for hyperbolic heat conduction based on the thermomass model. Int. J. Heat Mass Transfer 54, 1924–1929 (2011) [WoS]
  • Y. Dong, B.-Y. Cao, and Z.-Y. Guo. Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (2011) [WoS]
  • S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Pys. Lett. 92, 151911 (2008) [WoS]
  • Z.-Y. Guo. Motion and transfer of thermal mass - thermal mass and thermon gas. J. Eng. Term 27, 631–634 (2006)
  • Z.-Y. Guo and Q.-W. Hou. Thermal wave based on the thermomass model. J. Heat Trans. - T. ASME 132, 072403 (2010)
  • R. A. Guyer and J. A. Krumhansl. Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)
  • R. A. Guyer and J. A. Krumhansl. Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)
  • D. Jou, J. Casas-Vázquez, and G. Lebon. Extended irreversible thermodynamics revisited (1988-1998). Rep. Prog. Phys. 62, 1035–1142 (1999)
  • D. Jou, J. Casas-Vázquez, and G. Lebon. Extended Irreversible Thermodynamics. Springer, Berlin, fourth revised edition (2010)
  • G. Lebon, D. Jou, and J. Casas-Vázquez. Understanding nonequilibrium thermodynamics. Springer, Berlin (2008)
  • A. A. Maznev, J. A. Johnson, and K. A. Nelson. Onset of nondiffusive phonon transport in transient thermal grating decay. Phys. Rev. B 84, 195206 (2011) [WoS]
  • A. J. Minnich, G. Chen, S. Mansoor, and B. S. Yilbas. Quasiballistic heat transfer studied using the frequencydependent Boltzmann transport equation. Phys. Rev. B 84, 235207 (2011) [WoS]
  • A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, 095901 (2011) [WoS][PubMed]
  • A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi. Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl. Phys. Lett. 93, 083112 (2008) [WoS]
  • D. L. Nika and A. A. Balandin. Two-dimensional phonon transport in graphene. J. Phys.: Condens. Matter 24, 233203 (2012)
  • D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Appl. Phys. Lett. 94, 203103 (2009) [WoS]
  • D. L. Nika, E. P. Pokatilov, A. S. Askerox, and A. A. Balandin. Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009) [WoS]
  • D. L. Nika, A. S. Askerov, and A. A. Balandin. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 12, 3238–3244 (2012) [PubMed][WoS]
  • A. Sellitto and V. A. Cimmelli. A continuum approach to thermomass theory. J. Heat Trans. - T. ASME, ahead of print - DOI:10.1115/1.4006956. [Crossref]
  • A. Sellitto, F. X. Alvarez, and D. Jou. Second law of thermodynamics and phonon-boundary conditions in nanowires. J. Appl. Phys. 107, 064302 (2010) [WoS]
  • A. Sellitto, F. X. Alvarez, and D. Jou. Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires. J. Appl. Phys. 107, 114312 (2010)
  • A. Sellitto, F. X. Alvarez, and D. Jou. Phonon-wall interactions and frequency-dependent thermal conductivity in nanowires. J. Appl. Phys. 109, 064317 (2011)
  • A. Sellitto, F. X. Alvarez, and D. Jou. Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires. Int. J. Heat Mass Transfer 55, 3114–3120 (2012) [WoS]
  • A. Sellitto, D. Jou, and J. Bafaluy. Nonlocal effects in radial heat transport in silicon thin layers and graphene sheets. Proc. R. Soc. A 468, 1217–1229 (2012)
  • Z. Tešanovic, M. V. Jaric, and S. Maekawa. Quantum transport and surface scattering. Phys. Rev. Lett. 57, 2760–2763 (1986)
  • D. Y. Tzou. Macro to micro-scale heat transfer. The lagging behaviour. Taylor and Francis, New York (1997)
  • D. Y. Tzou. Nonlocal behavior in phonon transport. Int. J. Heat Mass Transfer 54, 475–481 (2011) [WoS]
  • D. Y. Tzou and Z.-Y. Guo. Nonlocal behavior in thermal lagging. Int. J. Thermal Sci. 49, 1133–1137 (2010)
  • M. Wang, N. Yang, and Z.-Y. Guo. Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011)
  • Z. M. Zhang. Nano/Microscale heat transfer. McGraw-Hill, New York (2007)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.