PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 1 | 124-150
Tytuł artykułu

Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins¶a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundaryintegral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes.
Wydawca
Rocznik
Tom
1
Strony
124-150
Opis fizyczny
Daty
otrzymano
2012-10-08
zaakceptowano
2013-04-29
online
2013-06-10
Bibliografia
  • [1] Matlab v.6 and R2012b, The Mathworks, Inc., Natick, MA
  • [2] M. D. Altman. Computational ligand design and analysis in protein complexes using inverse methods, combinatorialsearch, and accurate solvation modeling. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.,2006.
  • [3] M. D. Altman, J. P. Bardhan, B. Tidor, and J. K. White. FFTSVD: A fast multiscale boundary-element method solversuitable for BioMEMS and biomolecule simulation. IEEE T. Comput.-Aid. D., 25 (2006), 274–284.
  • [4] M. D. Altman, J. P. Bardhan, J. K. White, and B. Tidor. An efficient and accurate surface formulation for biomoleculeelectrostatics in non-ionic solution. Engineering in Medicine and Biology Conference (EMBC), 7591-7595, 2005.
  • [5] M. D. Altman, J. P. Bardhan, J. K. White, and B. Tidor. Accurate solution of multi-region continuum electrostaticproblems using the linearized Poisson–Boltzmann equation and curved boundary elements. J. Comput. Chem., 30(2009), 132–153.
  • [6] K. E. Atkinson. The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press,1997.
  • [7] C. Bajaj, S.-C. Chen, and A. Rand. An efficient higher-order fast multipole boundary element solution for Poisson–Boltzmann-based molecular electrostatics. SIAM J. Sci. Comput., 33 (2011), 826–848.
  • [8] N. A. Baker, D. Sept, M. J. Holst, and J. A. McCammon. Electrostatics of nanoysystems: Application to microtubulesand the ribosome. Proc. Natl. Acad. Sci. USA, 98 (2001), 10037–10041.[Crossref]
  • [9] J. P. Bardhan. Interpreting the Coulomb-field approximation for Generalized-Born electrostatics using boundaryintegralequation theory. J. Chem. Phys., 129 (2008), Art. ID 144105.[Crossref]
  • [10] J. P. Bardhan. Numerical solution of boundary-integral equations for molecular electrostatics. J. Chem. Phys., 130(2009), Art. ID 094102.[Crossref]
  • [11] J. P. Bardhan, M. D. Altman, J. K. White, and B. Tidor. Numerical integration techniques for curved-panel discretizationsof molecule–solvent interfaces. J. Chem. Phys., 127 (2007), Art. ID 014701.[Crossref]
  • [12] J. P. Bardhan, R. S. Eisenberg, and D. Gillespie. Discretization of the induced-charge boundary integral equation.Phys. Rev. E, 80 (2009), Art. ID 011906.[Crossref]
  • [13] J. P. Bardhan and M. G. Knepley. Mathematical analysis of the boundary-integral based electrostatics estimationapproximation for molecular solvation: Exact results for spherical inclusions. J. Chem. Phys., 135 (2011), Art. ID124107.[Crossref]
  • [14] J. P. Bardhan and M. G. Knepley. Computational science and re-discovery: open-source implementation of ellipsoidalharmonics for problems in potential theory. Computational Science and Discovery, 5 (2012), Art. ID 014006.
  • [15] J. P. Bardhan, M. G. Knepley, and M. Anitescu. Bounding the electrostatic free energies associated with linearcontinuum models of molecular solvation. J. Chem. Phys., 130 (2009), Art. ID 104108.[Crossref]
  • [16] D. Bashford and D. A. Case. Generalized Born models of macromolecular solvation effects. Annu. Rev. Phys. Chem.,51 (2000), 129–152.[Crossref]
  • [17] C. Berti, D. Gillespie, J. P. Bardhan, R. S. Eisenberg, and C. Fiegna. Comparison of three-dimensional poissonsolution methods for particle-based simulation and inhomogeneous dielectrics. Phys. Rev. E, 86 (2012), Art. ID011912.[Crossref]
  • [18] A. J. Bordner and G. A. Huber. Boundary element solution of the linear Poisson–Boltzmann equation and a multipolemethod for the rapid calculation of forces on macromolecules in solution. J. Comput. Chem., 24 (2003), 353–367.
  • [19] A. H. Boschitsch, M. O. Fenley, and H.-X. Zhou. Fast boundary element method for the linear Poisson–Boltzmannequation. J. Phys. Chem. B, 106 (2002), 2741–2754.[Crossref]
  • [20] B. O. Brandsdal, J. Åqvist, and A. O. Smalås. Computational analysis of binding of P1 variants to trypsin. ProteinScience, 10 (2001), 1584–1595.
  • [21] B. O. Brandsdal, A. O. Smalås, and J. Åqvist. free energy calculations show that acidic P1 variants undergo largepKa shifts upon binding to trypsin. Proteins: Structure, Function, and Bioinformatics, 64 (2006), 740–748.
  • [22] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. CHARMM: A programfor macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem., 4 (1983), 187–217.
  • [23] N. Carrascal and D. F. Green. Energetic decomposition with the Generalized-Born and Poisson–Boltzmann solventmodels: Lessons from association of G-protein components. J. Phys. Chem. B, 114 (2010), 5096–5116.[Crossref]
  • [24] D. Chen, Z. Chen, C. Chen, W. Geng, and G.-W. Wei. MIBPB: A software package for electrostatic analysis. J.Comput. Chem., 32 (2011), 756–770.
  • [25] J. H. Chen, C. L. Brooks, and J. Khandogin. Recent advances in implicit solvent-based methods for biomolecularsimulations. Curr. Opin. Struc. Biol., 18 (2008), 140–148.[Crossref]
  • [26] Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodriguez. Certified reduced basis methods and output bounds for theharmonic maxwell’s problems. SIAM J. Sci. Comput., 32 (2010), 970–996.
  • [27] C. J. Cramer and D. G. Truhlar. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem. Rev.,99 (1999), 2161–2200.[Crossref]
  • [28] G. Dassios. Ellipsoidal harmonics: theory and applications. Cambridge University Press, 2012.
  • [29] B. Fares, J. S. Hesthaven, Y. Maday, and B. Stamm. The reduced basis method for the electric field integral equation.J. Comput. Phys., 230 (2011), 5532–5555.[Crossref]
  • [30] P. O. Fedichev, E. G. Getmantsev, and L. I. Menshikov. O(n log n) continuous electrostatics solvation energiescalculation method for biomolecu les simulations. J. Comput. Chem., 32 (2011), 1368–1376.
  • [31] M. Feig and C. L. Brooks III. Recent advances in the development and application of implicit solvent models inbiomolecule simulations. Curr. Opin. Struc. Biol., 14 (2004), 217–224.[Crossref]
  • [32] M. Feig, A. Onufriev, M. S. Lee, W. Im, D. A. Case, and C. L. Brooks III. Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. J. Comput.Chem., 25 (2004), 265–284.
  • [33] A. Ghosh, C. S. Rapp, and R. A. Friesner. Generalized Born model based on a surface integral formulation. J. Phys.Chem. B, 102 (1998), 10983–10990.[Crossref]
  • [34] M. K. Gilson and B. Honig. Calculation of the total electrostatic energy of a macromolecular system: Solvationenergies, binding energies, and conformational analysis. Proteins, 4 (1988), 7–18..[Crossref]
  • [35] D. F. Green and B. Tidor. Design of improved protein inhibitors of HIV-1 cell entry: Optimization of electrostaticinteractions at the binding interface. Proteins: Structure, Function, and Bioinformatics, 60 (2005), 644–657.
  • [36] P. Grochowski and J. Trylska. Continuum molecular electrostatics, salt effects, and counterion binding-a review ofthe Poisson–Boltzmann theory and its modifications. Biopolymers, 89 (2008), 93–113.[Crossref]
  • [37] R. Helland, J.Otlewski, O. Sundheim, M. Dadlez, and A. O. Smalås. The crystal structures of the complexes betweenbovine beta-trypsin and ten P1 variants of BPTI. J. Mol. Biol., 287 (1999), 923–942.
  • [38] Z. S. Hendsch, C. V. Sindelar, and B. Tidor. Parameter dependence on continuum electrostatic calculations: A studyusing protein salt bridges. J. Phys. Chem. B, 102 (1998), 4404–4410.[Crossref]
  • [39] Z. S. Hendsch and B. Tidor. Electrostatic interactions in the GCN4 leucine zipper: Substantial contributions arisefrom intramolecular interactions enhanced on binding. Protein Science, 8 (1999), 1381–1392.
  • [40] E. W. Hobson. The theory of spherical and ellipsoidal harmonics. Chelsea Pub Co., 1931.
  • [41] G. C. Hsiao and R. E. Kleinman. Error analysis in numerical solution of acoustic integral equations. InternationalJournal for Numerical Methods in Engineering, 37 (1994), 2921–2933.
  • [42] L. Hu and G.-W. Wei. Nonlinear Poisson equation for heterogeneous media. Biophys. J., 103 (2012), 758–766.[Crossref]
  • [43] A. D. MacKerell Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao,H. Guo, S. Ha, D. Joseph–McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T.Nguyen, B. Prodhom, W. E. Reiher III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe,J. Wiorkiewicz–Kuczera, D. Yin, and M. Karplus. All-atom empirical potential for molecular modeling and dynamicsstudies of proteins. J. Phys. Chem. B, 102 (1998), 3586–3616.
  • [44] A. H. Juffer, E. F. F. Botta, B. A. M. van Keulen, A. van der Ploeg, and H. J. C. Berendsen. The electric potential ofa macromolecule in a solvent: A fundamental approach. J. Comput. Phys., 97 (1991), 144–171.[Crossref]
  • [45] J. G. Kirkwood. Theory of solutions of molecules containing widely separated charges with special application tozwitterions. J. Chem. Phys., 2 (1934), 351.[Crossref]
  • [46] I. Klapper, R. Hagstrom, R. Fine, K. Sharp, and B. Honig. Focusing of electric fields in the active site of Cu-Znsuperoxide dismutase: Effects of ionic strength and amino-acid modification. Proteins, 1 (1986), 47–59.[Crossref]
  • [47] P. Koehl. Electrostatics calculations: latest methodological advances. Curr. Opin. Struc. Biol., 16 (2006), 142–151.[Crossref]
  • [48] P. Kukic and J. E. Nielsen. Electrostatics in proteins and protein-ligand complexes. Future Med Chem., 2 (2010),647–666.
  • [49] S. Kuo, B. Tidor, and J. White. A meshless, spectrally accurate, integral equation solver for molecular surfaceelectrostatics. ACM Journal on Emerging Technologies in Computing Systems, 4 (2008), 6.
  • [50] L.-P. Lee and B. Tidor. Optimization of binding electrostatics: Charge complementarity in the barnase-barstarprotein complex. Protein Science, 10 (2001), 362–377.
  • [51] R. M. Levy and E. Gallicchio. Computer simulations with explicit solvent: Recent progress in the thermodynamicdecomposition of free energies and in modeling electrostatic effects. Ann. Rev. Phys. Chem., 49 (1998), 531–567.[Crossref]
  • [52] J. Liang and S. Subramaniam. Computation of molecular electrostatics with boundary element methods. Biophys.J., 73 (1997), 1830–1841.[Crossref]
  • [53] B. Lin and B. M. Pettitt. Electrostatic solvation free energy of amino acid side chain analogs: implications for thevalidity of electrostatic linear response in water. J. Comput. Chem., 32 (2010), 878–885.
  • [54] Y. Lin, A. Baumketner, W. Song, S. Deng, D. Jacobs, and W. Cai. Ionic solvation studied by image-charge reactionfield method. J. Chem. Phys., 134 (2011), Art. ID 044105.[Crossref]
  • [55] S. M. Lippow, K. D. Wittrup, and B. Tidor. Computational design of antibody-affinity improvement beyond in vivomaturation. Nature Biotechnology, 25 (2007), 1171–1176.
  • [56] B. Z. Lu, X. L. Cheng, J. Huang, and J. A. McCammon. Order N algorithm for computation of electrostatic interactionsin biomolecular systems. Proc. Natl. Acad. Sci. USA, 103 (2006), 19314–19319.[Crossref]
  • [57] J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty, A. Ilin, J. Antosiewicz, M. K. Gilson, B. Bagheri,L. Ridgway-Scott, and J. A. McCammon. Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Comm., 91 (1995), 57–95.[Crossref]
  • [58] J. Michel, R. D. Taylor, and J. W. Essex. The parameterization and validation of generalized Born models using thepairwise descreening approximation. J. Comput. Chem., 25 (2004), 1760–1770.
  • [59] K. S. Midelfort, H. H. Hernandez, S. M. Lippow, B. Tidor, C. L. Drennan, and K. D. Wittrup. Substantial energeticimprovement with minimal structural perturbation in a high affinity mutant antibody. J. Mol. Biol., 343 (2004),685–701.[Crossref]
  • [60] S. Miertus, E. Scrocco, and J. Tomasi. Electrostatic interactions of a solute with a continuum – a direct utilizationof ab initio molecular potentials for the prevision of solvent effects. Chem. Phys., 55 (1981), 117–129.[Crossref]
  • [61] M. S. Minkara, P. H. Davis, and M. L. Radhakrishnan. Multiple drugs and multiple targets: An analysis of theelectrostatic determinants of binding between non-nucleoside hiv-1 reverse transcriptase inhibitors and variants ofHIV-1 RT. Proteins-Structure Function and Bioinformatics, 80 (2012), 573–590.
  • [62] A. Onufriev, D. A. Case, and D. Bashford. Effective Born radii in the generalized Born approximation: The importanceof being perfect. J. Comput. Chem., 23 (2002), 1297–1304.
  • [63] M. Orozco and F. J. Luque. Theoretical methods for the description of the solvent effect in biomolecular systems.Chem. Rev., 100 (2000), 4187–4225.[Crossref]
  • [64] J. J. Perona, C. A. Tsu, M. E. McGrath, C. S. Craik, and R. J. Fletterick. Relocating a negative charge in the bindingpocket of trypsin. J. Mol. Biol., 230 (1993), 934–949.[Crossref]
  • [65] M. L. Radhakrishnan. Designing electrostatic interactions in biological systems via charge optimization or combinatorialapproaches: insights and challenges with a continuum electrostatic framework. Theor. Chem. Acc., 131(2012).[Crossref]
  • [66] K. N. Rankin, T. Sulea, and E. O. Purisima. On the transferability of hydration-parametrized continuum electrostaticsmodels to solvated binding calculations. J. Comput. Chem., 24 (2003), 954–962.
  • [67] S. Ritter. The spectrum of the electrostatic integral operator for an ellipsoid. In R. E. Kleinman, R. Kress, andE. Martensen, editors, Inverse scattering and potential problems in mathematical physics, pages 157–167, Frankfurt/Bern, 1995.
  • [68] S. Ritter. On the magnetostatic integral operator for ellipsoids. J. Math. Anal. Appl., 207 (1997), 12–28.[Crossref]
  • [69] S. Ritter. On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z.Angew. Math. Mech., 78 (1998), 66–72.[Crossref]
  • [70] W. Rocchia, E. Alexov, and B. Honig. Extending the applicability of the nonlinear Poisson–Boltzmann equation:Multiple dielectric constants and multivalent ions. J. Phys. Chem. B, 105 (2001), 6507–6514.[Crossref]
  • [71] W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, and B. Honig. Rapid grid-based construction of themolecular surface and the use of induced surface charge to calculate reaction field energies: Applications to themolecular systems and geometric objects. J. Comput. Chem., 23 (2002), 128–137.
  • [72] B. Roux and T. Simonson. Implicit solvent models. Biophys. Chem., 78 (1999), 1–20.[Crossref]
  • [73] S. Rush, A. H. Turner, and A. H. Cherin. Computer solution for time-invariant electric fields. J. Appl. Phys., 37(1966), 2211–2217.[Crossref]
  • [74] M. Sanner, A. J. Olson, and J. C. Spehner. Reduced surface: An efficient way to compute molecular surfaces.Biopolymers, 38 (1996), 305–320.[Crossref]
  • [75] M. F. Sanner. Molecular surface computation home page. http://www.scripps.edu/ sanner/html/msms_home.html,1996.
  • [76] M. Scarsi and A. Caflisch. Comment on the validation of continuum electrostatics models. J. Comput. Chem., 20(1999), 1533–1536.
  • [77] M. Schaefer and M. Karplus. A comprehensive analytical treatment of continuum electrostatics. J. Phys. Chem., 100(1996), 1578–1599.[Crossref]
  • [78] P. B. Shaw. Theory of the Poisson Green’s-function for discontinuous dielectric media with an application to proteinbiophysics. Phys. Rev. A, 32 (1985), 2476–2487.[Crossref]
  • [79] G. Sigalov, P. Scheffel, and A. Onufriev. Incorporating variable dielectric environments into the generalized Bornmodel. J. Chem. Phys., 122 (2005), Art. ID 094511.[Crossref]
  • [80] T. Simonson. Macromolecular electrostatics: Continuum models and their growing pains. Curr. Opin. Struc. Biol.,11 (2001), 243–252.[Crossref]
  • [81] D. Sitkoff, K. A. Sharp, and B. Honig. Accurate calculation of hydration free-energies using macroscopic solventmodels. J. Phys. Chem., 98 (1994), 1978–1988.[Crossref]
  • [82] W.C. Still, A. Tempczyk, R. C. Hawley, and T. F. Hendrickson. Semianalytical treatment of solvation for molecularmechanics and dynamics. J. Am. Chem. Soc., 112 (1990), 6127–6129.[Crossref]
  • [83] S. Varma and S. B. Rempe. Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem., 124(2006), 192–199.[Crossref]
  • [84] A. Warshel, P. K. Sharma, M. Kato, and M. W. Parson. Modeling electrostatic effects in proteins. Biochimica etBiophysica Acta, 1764 (2006), 1647–1676.
  • [85] J. Warwicker and H. C. Watson. Calculation of the electric potential in the active site cleft due to alpha-helixdipoles. J. Mol. Biol., 157 (1982), 671–679.[Crossref]
  • [86] T. W. Whitfield, S. Varma, E. Harder, G. Lamoureux, S. B. Rempe, and B. Roux. Theoretical study of aqueoussolvation of K+ comparing ab initio, polarizable, and fixed-charge models. J. Chem. Theory Comput., 3 (2007),2068–2082.[Crossref]
  • [87] Z. Xu and W. Cai. Fast analytical methods for macroscopic electrostatic models in biomolecular simulations. SIAMReview, 53 (2011), 683–720.[Crossref]
  • [88] C. Xue and S. Deng. Three-layer dielectric models for generalized coulomb potential calculation in ellipsoidalgeometry. Phys. Rev. E, 83 (2011), Art. ID 056709.[Crossref]
  • [89] B. J. Yoon and A. M. Lenhoff. A boundary element method for molecular electrostatics with electrolyte effects. J.Comput. Chem., 11 (1990), 1080–1086.
  • [90] S. N. Yu, Y. C. Zhou, and G. W. Wei. Matched interface and boundary (MIB) method for elliptic problems withsharp-edged interfaces. J. Comput. Phys., 224 (2007), 729–756.[Crossref]
  • [91] R. J. Zauhar and R. S. Morgan. A new method for computing the macromolecular electric-potential. J. Mol. Biol.,186 (1985), 815–820.[Crossref]
  • [92] R. J. Zauhar and R. S. Morgan. The rigorous computation of the molecular electric potential. J. Comput. Chem., 9(1988), 171–187.
  • [93] Y. C. Zhou, M. Feig, and G. W. Wei. Highly accurate biomolecular electrostatics in continuum dielectric environments.J. Comput. Chem., 29 (2008), 87–97.
  • [94] M. Zink and H. Grubmüller. Mechanical properties of the icosahedral shell of southern bean mosaic virus: amolecular dynamics study. Biophys. J., 96 (2009), 1350–1363.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_mlbmb-2013-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.