PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 1 | 42-62
Tytuł artykułu

Progress in developing Poisson-Boltzmann equation solvers

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nanoobjects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nanoobjects.
Wydawca
Rocznik
Tom
1
Strony
42-62
Opis fizyczny
Daty
otrzymano
2012-11-15
zaakceptowano
2013-02-20
online
2013-03-21
Bibliografia
  • M.J. Abraham, and J.E. Gready, Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5, Journal of computational chemistry 32 (2011), pp. 2031-2040.
  • N. Adir et al., Co-crystallization and characterization of the photosynthetic reaction center-cytochrome c2 complex from Rhodobacter sphaeroides, Biochemistry 35 (1996), pp. 2535-47. [Crossref][PubMed]
  • B. Aksoylu et al., Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation, Journal of Scientific Computing (2012), pp. 1-24.
  • E. Alexov, Role of the protein side-chain fluctuations on the strength of pair-wise electrostatic interactions: comparing experimental with computed pK(a)s, Proteins-Structure Function and Bioinformatics 50 (2003), pp. 94-103.
  • E. Alexov et al., Progress in the prediction of pKa values in proteins, Proteins-Structure Function and Bioinformatics 79 (2011), pp. 3260-75.
  • E.G. Alexov, and M.R. Gunner, Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties, Biophys J 72 (1997), pp. 2075-93. [Crossref][PubMed]
  • E.G. Alexov, and M.R. Gunner, Calculated protein and proton motions coupled to electron transfer: electron transfer from QA- to QB in bacterial photosynthetic reaction centers, Biochemistry 38 (1999), pp. 8253-70. [Crossref][PubMed]
  • T. Althoff et al., Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1, The EMBO Journal 30 (2011), pp. 4652-4664. [Crossref]
  • M.D. Altman et al., FFTSVD: A fast multiscale boundary-element method solver suitable for bio-MEMS and biomolecule simulation, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 25 (2006), pp. 274-284.
  • M.D. Altman et al., Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson–Boltzmann equation with curved boundary elements, Journal of computational chemistry 30 (2009), pp. 132-153.
  • C. Bajaj, S.-C. Chen, and A. Rand, An efficient higher-order fast multipole boundary element solution for poissonboltzmann- based molecular electrostatics, SIAM Journal on Scientific Computing 33 (2011), pp. 826-848. [Crossref]
  • K. Baker et al., ICSM: An order N method for calculating electrostatic interactions added to TINKER, Computer Physics Communications 184 (2013), pp. 19-26.
  • N. Baker, M. Holst, and F. Wang, Adaptive multilevel finite element solution of the Poisson–Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems, Journal of computational chemistry 21 (2000), pp. 1343-1352.
  • N.A. Baker, Poisson-Boltzmann methods for biomolecular electrostatics, Methods Enzymol 383 (2004), pp. 94-118.
  • N.A. Baker, and J.A. McCammon, Electrostatic interactions, Methods Biochem Anal 44 (2003), pp. 427-40. [PubMed]
  • N.A. Baker et al., The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers, IBM Journal of Research and Development 45 (2001), pp. 427-438. [Crossref]
  • N.A. Baker et al., Electrostatics of nanosystems: application to microtubules and the ribosome, Proceedings of the National Academy of Sciences 98 (2001), pp. 10037.
  • R.E. Bank, and M. Holst, A new paradigm for parallel adaptive meshing algorithms, SIAM Journal on Scientific Computing 22 (2000), pp. 1411. [Crossref]
  • J.P. Bardhan, Numerical solution of boundary-integral equations for molecular electrostatics, The Journal of chemical physics 130 (2009), pp. 094102.
  • J.P. Bardhan et al., Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces, The Journal of chemical physics 127 (2007), pp. 014701.
  • D. Bashford, An object-oriented programming suite for electrostatic effects in biological molecules. An experience report on the MEAD project. Scientific Computing in Object-Oriented Parallel Environments, Y. Ishikawa, R. Oldehoeft, J. Reynders and M. Tholburn eds., Springer Berlin / Heidelberg, 1997, pp. 233-240.
  • D. Bashford, and D.A. Case, Generalized born models of macromolecular solvation effects, Annu Rev Phys Chem 51 (2000), pp. 129-52. [PubMed][Crossref]
  • S.D. Bond et al., A first-order system least-squares finite element method for the Poisson-Boltzmann equation, Journal of computational chemistry 31 (2009), pp. 1625-1635.
  • A. Bordner, and G. Huber, Boundary element solution of the linear Poisson–Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution, Journal of computational chemistry 24 (2003), pp. 353-367.
  • N. Borisenko et al., An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1- methylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate/Au (111) interface: potential dependent solvation layers and the herringbone reconstruction, Physical Chemistry Chemical Physics 13 (2011), pp. 6849-6857.
  • I. Borukhov, D. Andelman, and H. Orland, Steric effects in electrolytes: A modified Poisson-Boltzmann equation, Physical review letters 79 (1997), pp. 435-438. [Crossref]
  • I. Borukhov, D. Andelman, and H. Orland, Adsorption of large ions from an electrolyte solution: a modified Poisson- Boltzmann equation, Electrochimica Acta 46 (2000), pp. 221-229. [Crossref]
  • A.H. Boschitsch, and M.O. Fenley, Hybrid boundary element and finite difference method for solving the Nonlinear poisson-boltzmann equation, Journal of computational chemistry 25 (2004), pp. 935-955.
  • A.H. Boschitsch, and M.O. Fenley, A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation, Journal of computational chemistry 28 (2007), pp. 909-921.
  • A.H. Boschitsch, and M.O. Fenley, A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids, Journal of Chemical Theory and Computation 7 (2011), pp. 1524. [Crossref][PubMed]
  • A.H. Boschitsch, M.O. Fenley, and H.X. Zhou, Fast boundary element method for the linear Poisson-Boltzmann equation, The Journal of Physical Chemistry B 106 (2002), pp. 2741-2754. [Crossref]
  • T. Boublik, Hard-Sphere Equation of State, Journal of Chemical Physics 53 (1970), pp. 471-&. [Crossref]
  • W.R. Bowen, and A.O. Sharif, Adaptive Finite-Element Solution of the Nonlinear Poisson–Boltzmann Equation: A Charged Spherical Particle at Various Distances from a Charged Cylindrical Pore in a Charged Planar Surface, Journal of colloid and interface science 187 (1997), pp. 363-374.
  • B.R. Brooks et al., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J Comput Chem 4 (2004), pp. 187-217.
  • O.P. Bruno, and L.A. Kunyansky, A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications, Journal of Computational Physics 169 (2001), pp. 80-110.
  • Q. Cai et al., Performance of Nonlinear Finite-Difference Poisson- Boltzmann Solvers, Journal of Chemical Theory and Computation 6 (2009), pp. 203-211.
  • Q. Cai et al., Dielectric boundary force in numerical Poisson-Boltzmann methods: Theory and numerical strategies, Chemical Physics Letters 514 (2011), pp. 368-373.
  • K.M. Callenberg et al., APBSmem: a graphical interface for electrostatic calculations at the membrane, PloS one 5 (2010), pp. e12722.
  • D.S. Cerutti, and D.A. Case, Multi-level Ewald: a hybrid multigrid/fast fourier transform approach to the electrostatic particle-mesh problem, Journal of Chemical Theory and Computation 6 (2009), pp. 443-458.
  • J.H. Chaudhry, S.D. Bond, and L.N. Olson, A weighted adaptive least-squares finite element method for the Poisson–Boltzmann equation, Applied Mathematics and Computation (2011).
  • C. Chen et al., Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP, J Biol Chem 279 (2004), pp. 31761-8.
  • D. Chen et al., MIBPB: a software package for electrostatic analysis, J Comput Chem 32 (2011), pp. 756-70. [Crossref][PubMed]
  • D.A. Chen et al., Software News and Update MIBPB: A Software Package for Electrostatic Analysis, Journal of computational chemistry 32 (2011), pp. 756-770.
  • L. Chen, M.J. Holst, and J. Xu, The finite element approximation of the nonlinear Poisson-Boltzmann equation, SIAM journal on numerical analysis 45 (2007), pp. 2298-2320.
  • M. Chen, and B. Lu, TMSmesh: A robust method for molecular surface mesh generation using a trace technique, Journal of Chemical Theory and Computation 7 (2010), pp. 203-212.
  • Z. Chen, N.A. Baker, and G.W. Wei, Differential geometry based solvation model I: Eulerian formulation, Journal of Computational Physics 229 (2010), pp. 8231-8258.
  • R.D. Coalson, and A. Duncan, Systematic Ionic Screening Theory of Macroions, Journal of Chemical Physics 97 (1992), pp. 5653-5661. [Crossref]
  • R.D. Coalson et al., Statistical-Mechanics of a Coulomb Gas with Finite-Size Particles - a Lattice Field-Theory Approach, Journal of Chemical Physics 102 (1995), pp. 4584-4594. [Crossref]
  • O. Collet, How does the first water shell fold proteins so fast?, arXiv preprint arXiv:1101.5502 (2011).
  • M.L. Connolly, Analytical molecular surface calculation, Journal of Applied Crystallography 16 (1983), pp. 548-558. [Crossref]
  • C.M. Cortis, and R.A. Friesner, Numerical solution of the Poisson-Boltzmann equation using tetrahedral finiteelement meshes, Journal of computational chemistry 18 (1997), pp. 1591-1608.
  • F. Corzana et al., Serine versus threonine glycosylation: the methyl group causes a drastic alteration on the carbohydrate orientation and on the surrounding water shell, Journal of the American Chemical Society 129 (2007), pp. 9458-9467. [Crossref]
  • U. Coskun et al., Structure and subunit arrangement of the A-type ATP synthase complex from the archaeon Methanococcus jannaschii visualized by electron microscopy, J Biol Chem 279 (2004), pp. 38644-8.
  • Q. Cui, Combining implicit solvation models with hybrid quantum mechanical/molecular mechanical methods: A critical test with glycine, The Journal of chemical physics 117 (2002), pp. 4720.
  • W. Dai, and R. Nassar, A generalized douglas adi method for solving three-dimensional parabolic differential equations on multilayers, International Journal of Numerical Methods for Heat & Fluid Flow 7 (1997), pp. 659- 674.
  • M. DAVIS, and J. MCCAMMON, Solving the finite difference linearized Poisson-Boltzmann equation: a comparison of relaxation and conjugate gradient methods, Journal of computational chemistry 10 (1989), pp. 386-391.
  • M.E. Davis et al., Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program, Computer Physics Communications 62 (1991), pp. 187-197. [Crossref]
  • M.E. Davis, and J.A. McCammon, Electrostatics in biomolecular structure and dynamics, Chemical Reviews 90 (1990), pp. 509-521. [Crossref]
  • S. Decherchi et al., Between Algorithm and Model: Different Molecular Surface Definitions for the Poisson- Boltzmann Based Electrostatic Characterization of Biomolecules in Solution, Communications in Computational Physics 13 (2013), pp. 61-89.
  • F. Dong, and H.X. Zhou, Electrostatic contributions to T4 lysozyme stability: solvent-exposed charges versus semi-buried salt bridges, Biophys J 83 (2002), pp. 1341-7.
  • J. Douglas, and J.E. Gunn, A general formulation of alternating direction methods, Numerische Mathematik 6 (1964), pp. 428-453. [Crossref]
  • R.O. Dror et al., Biomolecular simulation: a computational microscope for molecular biology, Annual Review of Biophysics 41 (2012), pp. 429-452. [PubMed][Crossref]
  • P.A. Egelstaff, P.A. Egelstaff, and G.B. Physicist, An introduction to the liquid state, ed, Vol. 162, Academic Press London, 1967.
  • M.O. Fenley et al., Using Correlated Monte Carlo Sampling for Efficiently Solving the Linearized Poisson- Boltzmann Equation Over a Broad Range of Salt Concentration, Journal of Chemical Theory and Computation 6 (2010), pp. 300-314. Available at ://000274757000030. [Crossref]
  • F. Fogolari, A. Brigo, and H. Molinari, The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology, Journal of Molecular Recognition 15 (2002), pp. 377-392. [Crossref]
  • D. Fotiadis et al., Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy, J Biol Chem 279 (2004), pp. 2063-8.
  • J. Frauenfeld et al., Cryo-EM structure of the ribosome-SecYE complex in the membrane environment, Nat Struct Mol Biol 18 (2011), pp. 614-21. [Crossref][PubMed]
  • V. Frecer, and S. Miertuš, Polarizable continuum model of solvation for biopolymers, International journal of quantum chemistry 42 (2004), pp. 1449-1468.
  • W. Geng, S. Yu, and G. Wei, Treatment of charge singularities in implicit solvent models, The Journal of chemical physics 127 (2007), pp. 114106.
  • M. Gilson, and B. Honig, Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis, Proteins 4 (1988), pp. 7-18. [Crossref][PubMed]
  • J.A. Grant, and B. Pickup, A Gaussian description of molecular shape, The Journal of Physical Chemistry 99 (1995), pp. 3503-3510. [Crossref]
  • J.A. Grant, B.T. Pickup, and A. Nicholls, A smooth permittivity function for Poisson-Boltzmann solvation methods, J Comput Chem 22 (2001), pp. 608-640. [Crossref]
  • B.J. Greber et al., Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution, J Mol Biol 418 (2012), pp. 145-60.
  • L.F. Greengard, and J. Huang, A new version of the fast multipole method for screened Coulomb interactions in three dimensions, Journal of Computational Physics 180 (2002), pp. 642-658. [Crossref]
  • W. Hackbusch, and Z.P. Nowak, On the fast matrix multiplication in the boundary element method by panel clustering, Numerische Mathematik 54 (1989), pp. 463-491. [Crossref]
  • R.C. Harris et al., Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes, Biophysical Chemistry 156 (2011), pp. 79-87. [Crossref][PubMed]
  • A. Herráez, Biomolecules in the computer: Jmol to the rescue, Biochemistry and Molecular Biology Education 34 (2006), pp. 255-261. [Crossref]
  • M. Holst, Adaptive multilevel finite element methods on manifolds and their implementation in MC, preparation; currently available as a technical report and User’s Guide to the MC software.
  • M. Holst, Adaptive numerical treatment of elliptic systems on manifolds, Advances in Computational Mathematics 15 (2001), pp. 139-191. [Crossref]
  • M. Holst, N. Baker, and F. Wang, Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples, Journal of computational chemistry 21 (2000), pp. 1319-1342.
  • M. Holst et al., Adaptive finite element modeling techniques for the Poisson-Boltzmann equation, Communications in Computational Physics 11 (2012), pp. 179.
  • M. Holst, and F. Saied, Multigrid solution of the Poisson-Boltzmann equation, Journal of computational chemistry 14 (2004), pp. 105-113.
  • M. Holst, R. Szypowski, and Y. Zhu, Adaptive Finite Element Methods with Inexact Solvers for the Nonlinear Poisson-Boltzmann Equation, arXiv preprint arXiv:1107.2143 (2011).
  • M.J. Holst, Multilevel methods for the Poisson-Boltzmann equation, (1993).
  • M.J. Holst, The Poisson-Boltzmann equation: analysis and Multilevel numerical solution, (1994).
  • M.J. Holst, and F. Saied, Numerical solution of the nonlinear Poisson–Boltzmann equation: Developing more robust and efficient methods, Journal of computational chemistry 16 (1995), pp. 337-364.
  • B. Honig, and A. Nicholls, Classical electrostatics in biology and chemistry, Science 268 (1995), pp. 1144-1149.
  • M.J. Hsieh, and R. Luo, Exploring a coarse-grained distributive strategy for finite-difference Poisson-Boltzmann calculations, Journal of Molecular Modeling 17 (2011), pp. 1985-1996. Available at ://000293137800017. [Crossref]
  • F.N. Hwang et al., Parallel Newton–Krylov–Schwarz algorithms for the three-dimensional Poisson–Boltzmann equation in numerical simulation of colloidal particle interactions, Computer Physics Communications 181 (2010), pp. 1529-1537. [Crossref]
  • W. Im, D. Beglov, and B. Roux, Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation, Computer Physics Communications 111 (1998), pp. 59-75. [Crossref]
  • W. Jiang et al., High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD, J Phys Chem Lett 2 (2011), pp. 87-92. [PubMed][Crossref]
  • S. Jo et al., PBEQ-Solver for online visualization of electrostatic potential of biomolecules, Nucleic Acids Research 36 (2008), pp. W270-W275. [Crossref]
  • A.H. Juffer et al., The electric potential of a macromolecule in a solvent: A fundamental approach, Journal of Computational Physics 97 (1991), pp. 144-171. [Crossref]
  • V. Kabaleeswaran et al., Asymmetric structure of the yeast F1 ATPase in the absence of bound nucleotides, Journal of Biological Chemistry 284 (2009), pp. 10546-10551.
  • S. Kirmizialtin et al., The Ionic Atmosphere around A-RNA: Poisson-Boltzmann and Molecular Dynamics Simulations, Biophysical journal 102 (2012), pp. 829-838. [Crossref][PubMed]
  • R. Konecny, N.A. Baker, and J.A. McCammon, iAPBS: a programming interface to the adaptive Poisson–Boltzmann solver, Computational Science & Discovery 5 (2012), pp. 015005.
  • P. Kukic, and J.E. Nielsen, Electrostatics in proteins and protein-ligand complexes, Future Med Chem 2 (2010), pp. 647-66. [Crossref][PubMed]
  • S.S. Kuo et al., Fast methods for simulation of biomolecule electrostatics, in Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design, ACM, 2002, pp. 466-473.
  • T.J. Lane et al., To milliseconds and beyond: challenges in the simulation of protein folding, Current Opinion in Structural Biology 23 (2013), pp. 58-65. [Crossref]
  • A.W. Lange, and J.M. Herbert, A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/Gaussian approach, The Journal of chemical physics 133 (2010), pp. 244111.
  • A.W. Lange, and J.M. Herbert, A simple polarizable continuum solvation model for electrolyte solutions, The Journal of chemical physics 134 (2011), pp. 204110-204110-15.
  • B. Lee, and F.M. Richards, The interpretation of protein structures: estimation of static accessibility, Journal of molecular biology 55 (1971), pp. 379-IN4.
  • M.S. Lee, and M.A. Olson, Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method, The Journal of Physical Chemistry B 109 (2005), pp. 5223-5236. [Crossref][PubMed]
  • T.F. Lerch, Q. Xie, and M.S. Chapman, The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion, Virology 403 (2010), pp. 26-36.
  • B. Li et al., Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates, Physica A: Statistical Mechanics and its Applications 389 (2010), pp. 1329-1345.
  • C. Li et al., Highly efficient and exact method for parallelization of grid-based algorithms and its implementation in DelPhi, Journal of computational chemistry 33 (2012), pp. 1960-6.
  • C. Li et al., Continuous development of schemes for parallel computing of the electrostatics in biological systems: Implementation in DelPhi, in preparation.
  • L. Li et al., On the dielectric "constant" of proteins: Smooth dielectric function for macromoleculer modelingand its implementation in DelPhi, JCTC, (2013), in press.
  • L. Li et al., DelPhi: a comprehensive suite for DelPhi software and associated resources, BMC Biophys 5 (2012), pp. 9. [PubMed][Crossref]
  • Y.Y. Lian et al., Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications, Computer Physics Communications 175 (2006), pp. 721-737. [Crossref]
  • J. Liang, and S. Subramaniam, Computation of molecular electrostatics with boundary element methods, Biophysical journal 73 (1997), pp. 1830-1841. [Crossref][PubMed]
  • B. Lu et al., Order N algorithm for computation of electrostatic interactions in biomolecular systems, Proceedings of the National Academy of Sciences 103 (2006), pp. 19314-19319.
  • B. Lu et al., An Adaptive Fast Multipole Boundary Element Method for Poisson- Boltzmann Electrostatics, Journal of Chemical Theory and Computation 5 (2009), pp. 1692-1699. [Crossref][PubMed]
  • -, AFMPB: an adaptive fast multipole Poisson–Boltzmann solver for calculating electrostatics in biomolecular systems, Computer Physics Communications 181 (2010), pp. 1150-1160. [PubMed]
  • B. Lu et al., Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: Finite element solutions, Journal of Computational Physics 229 (2010), pp. 6979-6994.
  • B. Lu, and J.A. McCammon, Improved boundary element methods for Poisson-Boltzmann electrostatic potential and force calculations, Journal of Chemical Theory and Computation 3 (2007), pp. 1134-1142. [Crossref]
  • B. Lu, and Y. Zhou, Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes II: Size Effects on Ionic Distributions and Diffusion-Reaction Rates, Biophysical journal 100 (2011), pp. 2475-2485. [Crossref][PubMed]
  • B. Lu et al., Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications, Communications in Computational Physics 3 (2008), pp. 973-1009.
  • B. Lu et al., Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution, The Journal of chemical physics 127 (2007), pp. 135102.
  • B. Luty, M. Davis, and J. McCammon, Electrostatic energy calculations by a finite-difference method: rapid calculation of charge-solvent interaction energies, Journal of computational chemistry 13 (1992), pp. 768-771.
  • T. Mackoy et al., Numerical Optimization of a Walk-on-Spheres Solver for the Linear Poisson-Boltzmann Equation, Communications in Computational Physics 13 (2013), pp. 195-206.
  • J.D. Madura et al., Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program, Computer Physics Communications 91 (1995), pp. 57-95. [Crossref]
  • G.A. Mansoori et al., Equilibrium Thermodynamic Properties of Misture of Hard Spheres, Journal of Chemical Physics 54 (1971), pp. 1523-25. [Crossref]
  • A.V. Marenich, C.J. Cramer, and D.G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, The Journal of Physical Chemistry B 113 (2009), pp. 6378-6396. [PubMed][Crossref]
  • M. Mascagni, and N.A. Simonov, Monte Carlo methods for calculating some physical properties of large molecules, SIAM Journal on Scientific Computing 26 (2004), pp. 339-357. [Crossref]
  • A. Meunier, and J.-F. Truchon, Predictions of hydration free energies from continuum solvent with solute polarizable models: the SAMPL2 blind challenge, Journal of computer-aided molecular design 24 (2010), pp. 361-372.
  • M. Mirzadeh et al., An adaptive, finite difference solver for the nonlinear Poisson-Boltzmann equation with applications to biomolecular computations, Communications in Computational Physics 13 (2013), pp. 150-173.
  • A. Nicholls, and B. Honig, A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation, Journal of computational chemistry 12 (1991), pp. 435-445.
  • J.E. Nielsen, M.R. Gunner, and B.E. Garcia-Moreno, The pKa Cooperative: a collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins, Proteins-Structure Function and Bioinformatics 79 (2011), pp. 3249-59.
  • H. Nymeyer, and H.X. Zhou, A method to determine dielectric constants in nonhomogeneous systems: application to biological membranes, Biophysical journal 94 (2008), pp. 1185-1193. [PubMed][Crossref]
  • X. Pang, and H.X. Zhou, Poisson-Boltzmann Calculations: van der Waals or Molecular Surface?, (2013).
  • J.C. Phillips et al., Scalable molecular dynamics with NAMD, J Comput Chem 26 (2005), pp. 1781-802. [PubMed][Crossref]
  • S. Piana, K. Lindorff-Larsen, and D.E. Shaw, Protein folding kinetics and thermodynamics from atomistic simulation, Proceedings of the National Academy of Sciences 109 (2012), pp. 17845-50.
  • N.V. Prabhu et al., Explicit ion, implicit water solvation for molecular dynamics of nucleic acids and highly charged molecules, J Comput Chem 29 (2008), pp. 1113-30. [Crossref][PubMed]
  • N.V. Prabhu, P.J. Zhu, and K.A. Sharp, Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson-Boltzmann method, J Comput Chem 25 (2004), pp. 2049-2064. [Crossref][PubMed]
  • L.R. Pratt et al., Boundary integral methods for the Poisson equation of continuum dielectric solvation models, International journal of quantum chemistry 64 (1997), pp. 121-141. [Crossref]
  • S. Pronk et al., GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics (2013). [Crossref]
  • A. Raval et al., Refinement of protein structure homology models via long, all-atom molecular dynamics simulations, Proteins: Structure, Function, and Bioinformatics 80 (2012), pp. 2071-9.
  • V.S. Reddy et al., Crystal structure of human adenovirus at 3.5 Å resolution, Science 329 (2010), pp. 1071-1075.
  • A. Robertson, E. Luttmann, and V.S. Pande, Effects of long-range electrostatic forces on simulated protein folding kinetics, Journal of computational chemistry 29 (2008), pp. 694-700.
  • W. Rocchia, E. Alexov, and B. Honig, Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions, The Journal of Physical Chemistry B 105 (2001), pp. 6507-6514. [Crossref]
  • W. Rocchia et al., Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects, J Comput Chem 23 (2001), pp. 128-137.
  • V. Rokhlin, Solution of acoustic scattering problems by means of second kind integral equations, Wave Motion 5 (1983), pp. 257-272. [Crossref]
  • S. Sarkar et al., DelPhi web server: a comprehensive online suite for electostatic calculations of biological macromolecules and their complexes, Commun. Comput. Phys. (2012).
  • A. Sayyed–Ahmad, K. Tuncay, and P.J. Ortoleva, Efficient solution technique for solving the Poisson–Boltzmann equation, Journal of computational chemistry 25 (2004), pp. 1068-1074.
  • K. Sharp, and B. Honig, Electrostatic interactions in macromolecules: theory and applications, Annual review of biophysics and biophysical chemistry 19 (1990), pp. 301-32.
  • A. Shestakov, J. Milovich, and A. Noy, Solution of the nonlinear Poisson–Boltzmann equation using pseudotransient continuation and the finite element method, Journal of colloid and interface science 247 (2002), pp. 62-79.
  • X. Shi, and P. Koehl, The geometry behind numerical solvers of the poisson boltzmann equation, (2008).
  • A.R.J. Silalahi et al., Comparing the Predictions of the Nonlinear Poisson-Boltzmann Equation and the Ion Size- Modified Poisson-Boltzmann Equation for a Low-Dielectric Charged Spherical Cavity in an Aqueous Salt Solution, Journal of Chemical Theory and Computation 6 (2010), pp. 3631-3639. [Crossref]
  • N.A. Simonov, M. Mascagni, and M.O. Fenley, Monte Carlo-based linear Poisson-Boltzmann approach makes accurate salt-dependent solvation free energy predictions possible, Journal of Chemical Physics 127 (2007). [Crossref]
  • T. Simonson, and D. Perahia, Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution, Proceedings of the National Academy of Sciences 92 (1995), pp. 1082-1086.
  • N. Smith et al., Protein Nano-Object Integrator (ProNOI) for generating atomic style objects for molecular modeling, submitted (2013).
  • N. Smith et al., DelPhi web server v2: incorporating atomic-style geometrical figures into the computational protocol, Bioinformatics 28 (2012), pp. 1655-1657. [Crossref]
  • X. Song, An inhomogeneous model of protein dielectric properties: Intrinsic polarizabilities of amino acids, The Journal of chemical physics 116 (2002), pp. 9359.
  • H. Spahr et al., Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis, Proc Natl Acad Sci U S A 109 (2012), pp. 15253-8.
  • K. Talley, P. Kundrotas, and E. Alexov, Modeling Salt Dependence of Protein-Protein Association: Linear vs Non-Linear Poisson-Boltzmann Equation, Communications 3 (2008).
  • C. Tan, Y.H. Tan, and R. Luo, Implicit nonpolar solvent models, Journal of Physical Chemistry B 111 (2007), pp. 12263-12274. [Crossref]
  • Y.H. Tan et al., Continuum polarizable force field within the Poisson-Boltzmann framework, Journal of Physical Chemistry B 112 (2008), pp. 7675-7688. [Crossref]
  • J. Tausch, and J. White, Multiscale bases for the sparse representation of boundary integral operators on complex geometry, SIAM Journal on Scientific Computing 24 (2003), pp. 1610-1629. [Crossref]
  • S. Unni et al., Web servers and services for electrostatics calculations with APBS and PDB2PQR, Journal of computational chemistry 32 (2011), pp. 1488-1491.
  • D. van der Spoel, P.J. van Maaren, and C. Caleman, GROMACS molecule & liquid database, Bioinformatics 28 (2012), pp. 752-753. [PubMed]
  • D. Voges, and A. Karshikoff, A model of a local dielectric constant in proteins, The Journal of chemical physics 108 (1998), pp. 2219.
  • Y.N. Vorobjev, and H.A. Scheraga, A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent, Journal of computational chemistry 18 (1998), pp. 569-583.
  • D.A. Walker et al., Electrostatics at the nanoscale, Nanoscale 3 (2011), pp. 1316-44. [Crossref][PubMed]
  • J. Wang et al., Achieving energy conservation in Poisson-Boltzmann molecular dynamics: Accuracy and precision with finite-difference algorithms, Chemical Physics Letters 468 (2009), pp. 112-118.
  • J. Wang et al., Reducing Grid Dependence in Finite-Difference Poisson-Boltzmann Calculations, Journal of Chemical Theory and Computation 8 (2012), pp. 2741-2751. [PubMed][Crossref]
  • J. Wang, and R. Luo, Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers, Journal of computational chemistry 31 (2010), pp. 1689-1698.
  • J. Wang et al., Poisson-Boltzmann solvents in molecular dynamics Simulations, Communications in Computational Physics 3 (2008), pp. 1010-1031.
  • L. Wang et al., Using DelPhi Capabilities to Mimic Protein’s Conformational Reorganization with Amino Acid Specific Dielectric Constants, Comput. Phys 13 (2013), pp. 13-30.
  • Y. Wang et al., Implementation of Accelerated Molecular Dynamics in NAMD, Comput Sci Discov 4 (2011). [PubMed][Crossref]
  • P. Wernet et al., The structure of the first coordination shell in liquid water, Science 304 (2004), pp. 995-999.
  • S. Witham et al., DelPhi webserver: Comprehensive suite for electrostatic calculations of biological macromolecules and their complexes, Bulletin of the American Physical Society 56 (2011).
  • G.C. Wong, and L. Pollack, Electrostatics of strongly charged biological polymers: ion-mediated interactions and self-organization in nucleic acids and proteins, Annu Rev Phys Chem 61 (2010), pp. 171-89. [PubMed][Crossref]
  • J.M. Word, and A. Nicholls, Application of the Gaussian dielectric boundary in Zap to the prediction of protein pK(a) values, Proteins-Structure Function and Bioinformatics 79 (2011), pp. 3400-3409.
  • D. Xie, and S. Zhou, A new minimization protocol for solving nonlinear Poisson–Boltzmann mortar finite element equation, BIT Numerical Mathematics 47 (2007), pp. 853-871. [Crossref]
  • D. Xu et al., The electrostatic characteristics of G center dot U wobble base pairs, Nucleic Acids Research 35 (2007), pp. 3836-3847. [Crossref]
  • D.R. Xu, N.L. Greenbaum, and M.O. Fenley, Recognition of the spliceosomal branch site RNA helix on the basis of surface and electrostatic features, Nucleic Acids Research 33 (2005), pp. 1154-1161. [Crossref][PubMed]
  • P.H. Yang, and J.A. Rupley, Protein-water interactions. Heat capacity of the lysozyme-water system, Biochemistry 18 (1979), pp. 2654-2661. [Crossref][PubMed]
  • R. Yokota et al., Biomolecular electrostatics using a fast multipole BEM on up to 512 GPUs and a billion unknowns, Computer Physics Communications 182 (2011), pp. 1272-1283. [Crossref]
  • S. Yu, W. Geng, and G. Wei, Treatment of geometric singularities in implicit solvent models, The Journal of chemical physics 126 (2007), pp. 244108.
  • S. Yu, and G. Wei, Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities, Journal of Computational Physics 227 (2007), pp. 602-632. [Crossref]
  • R. Zauhar, and R. Morgan, A new method for computing the macromolecular electric potential, Journal of molecular biology 186 (1985), pp. 815-820. [Crossref][PubMed]
  • B. Zhang et al., Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver, Communications in Computational Physics 13 (2013), pp. 90-106.
  • Z. Zhang, S. Witham, and E. Alexov, On the role of electrostatics in protein-protein interactions, Phys Biol 8 (2011), pp. 035001. [Crossref][PubMed]
  • H.X. Zhou, Boundary element solution of macromolecular electrostatics: interaction energy between two proteins, Biophysical journal 65 (1993), pp. 955-963. [PubMed][Crossref]
  • L. Zhou, and S.A. Siegelbaum, Effects of surface water on protein dynamics studied by a novel coarse-grained normal mode approach, Biophys J 94 (2008), pp. 3461-74. [PubMed][Crossref]
  • Y.C. Zhou, M. Feig, and G.W. Wei, Highly accurate biomolecular electrostatics in continuum dielectric environments, J Comput Chem 29 (2008), pp. 87-97. [PubMed][Crossref]
  • Y.C. Zhou, and G.W. Wei, On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method, Journal of Computational Physics 219 (2006), pp. 228-246.
  • Y.C. Zhou et al., High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, Journal of Computational Physics 213 (2006), pp. 1-30.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_mlbmb-2013-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.