Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 1 | 1-25

Tytuł artykułu

High-order fractional partial differential equation transform for molecular surface construction

Treść / Zawartość

Warianty tytułu

Języki publikacji



Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.







Opis fizyczny




  • Department of Mathematics Michigan State University, MI 48824,
  • Mathematical Biosciences Institute The Ohio State University,
    Columbus, OH, 43210, USA
  • Department of Mathematics Michigan State University, MI 48824,
  • Department of Electrical and Computer Engineering Michigan
    State University, MI 48824, USA
  • Department of Biochemistry and Molecular Biology Michigan
    State University, MI 48824, USA


  • O. P. Agrawal. Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl., 272:368–379, 2002.
  • B. Baeumer, M. Meerschaert, D. Benson, and S. Wheatcraft. Subordinated advection-dispersion equation for contaminant transport. Water Resour.Res., 37:1543–1550, 2001.
  • J. Bai and X. C. Feng. Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Proc., 16:2492– 2502, 2007.
  • P. W. Bates, Z. Chen, Y. H. Sun, G. W. Wei, and S. Zhao. Geometric and potential driving formation and evolution of biomolecular surfaces. J. Math. Biol., 59:193–231, 2009.
  • P. W. Bates, G. W. Wei, and S. Zhao. The minimal molecular surface. arXiv:q-bio/0610038v1, [q-bio.BM], 2006.
  • P. W. Bates, G. W. Wei, and S. Zhao. Minimal molecular surfaces and their applications. Journal of Computational Chemistry, 29(3):380–91, 2008. [Crossref]
  • A. L. Bertozzi and J. B. Greer. Low-curvature image simplifiers: Global regularity of smooth solutions and laplacian limiting schemes. Communications on Pure and Applied Mathematics, 57(6):764–790, 2004. [Crossref]
  • J. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics, 1(3):235–256, 1982. [Crossref]
  • P. Blomgren and T. Chan. Color TV: total variation methods for restoration of vector-valued images. Image Processing, IEEE Transactions on, 7(3):304–309, 1998. [Crossref]
  • A. Blumen, G. Zumofen, and J. Klafter. Transport aspects in anomalous diffusion: L’evy walks. Phys. Rev. A, 40:3964–3973, 1989. [Crossref]
  • M. Caputo. Linear model of dissipation whose w is almost frequency independent. Geophys. J. R. Astr. Soc., 13:529– 539, 1997.
  • V. Carstensen, R. Kimmel, and G. Sapiro. Geodesic active contours. International Journal of Computer Vision, 22:61–79, 1997.
  • A. Chambolle and P. L. Lions. Image recovery via total variation minimization and related problems. Numerische Mathematik, 76(2):167–188, 1997. [Crossref]
  • T. Chan, A. Marquina, and P. Mulet. High-order total variation-based image restoration. SIAM Journal on Scientific Computing, 22(2):503–516, 2000. [Crossref]
  • D. Chen, Z. Chen, C. Chen, W. H. Geng, and G. W. Wei. MIBPB: A software package for electrostatic analysis. J. Comput. Chem., 32:657 – 670, 2011.
  • D. Chen and G. W. Wei. Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices. J. Comput. Phys., 229:4431–4460, 2010.
  • F. Chen, C. M.and Liu, I. Turner, and V. Anh. A fourier method for the fractional diffusion equation describing sub-diffusion. Journal of Computational Physics, 227:886– 897, 2007.
  • Z. Chen, N. A. Baker, and G. W. Wei. Differential geometry based solvation models I: Eulerian formulation. J. Comput. Phys., 229:8231–8258, 2010.
  • Z. Chen, N. A. Baker, and G. W. Wei. Differential geometry based solvation models II: Lagrangian formulation. J. Math. Biol., 63:1139– 1200, 2011.
  • S. Didas, J. Weickert, and B. Burgeth. Properties of higher order nonlinear diffusion filtering. Journal of mathematical imaging and vision, 35(3):208–226, 2009.
  • T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, and N. A. Baker. PDB2PQR: An automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32:W665–W667, 2004. [Crossref]
  • R. Gabdoulline and R. Wade. Analytically defined surfaces to analyze molecular interaction properties. Journal of Molecular Graphics, 14(6):341–353., 1996. [Crossref]
  • W. Geng and G. W. Wei. Multiscale molecular dynamics using the matched interface and boundary method. J Comput. Phys., 230(2):435–457, 2011.
  • W. Geng, S. Yu, and G. W. Wei. Treatment of charge singularities in implicit solvent models. Journal of Chemical Physics, 127:114106, 2007.
  • J. Giard and B. Macq. Molecular surface mesh generation by filtering electron density map. International Journal of Biomedical Imaging, 2010(923780):9 pages, 2010.
  • R. Gorenflo, F. Mainardi, E. Scalas, and M. Raberto. Fractional calculus and continuous-time finance.iii,the diffusion limit.mathematical finance(konstanz, 2000). Trends in Math., Birkhuser, Basel, page 171, 18, 2001.
  • J. Grant and B. Pickup. A Gaussian description of molecular shape. Journal of Physical Chemistry, 99:3503–3510, 1995.
  • J. B. Greer and A. L. Bertozzi. H-1 solutions of a class of fourth order nonlinear equations for image processing. Discrete and Continuous Dynamical Systems, 10(1-2):349–366, 2004.
  • J. B. Greer and A. L. Bertozzi. Traveling wave solutions of fourth order PDEs for image processing. SIAM Journal on Mathematical Analysis, 36(1):38–68, 2004. [Crossref]
  • P. Guidotti and K. Longo. Two enhanced fourth order diffusion models for image denoising. Journal of Mathematical Imaging and Vision, 40:188–198, 2011.
  • P. Guidotti and K. Longo. Well-posedness for a class of fourth order diffusions for image processing. NODEANonlinear Differential Equations and Applications, 18:407–425, 2011.
  • N. Huang, Z. Shen, S. Long, N. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, and H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear nonstationary time series analysis. Proceedings of Royal Society of London A, 454:903–995, 1998.
  • Z. M. Jin and X. P. Yang. Strong solutions for the generalized Perona-Malik equation for image restoration. Nonlinear Analysis-Theory Methods and Applications, 73(4):1077–1084, 2010.
  • M. Lysaker, A. Lundervold, and X. C. Tai. Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing, 12(12):1579–1590, 2003. [Crossref]
  • F. Mainardi and R. Gorenflo. On Mittag-Leffler-type functions in fractional evolution processes. Journal of Computational and Applied Mathematics, 118:283 – 299, 2000. [Crossref]
  • M. Meerschaert. Fractional calculus, anomalous diffusion, and probability. Fractional Dynamics, R. Metzler and J. Klafter, Eds., World Scientific, Singapore, pages 265–284, 2012.
  • M. Meerschaert and C. Tadjeran. Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1):65–77, 2004. [Crossref]
  • D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5):577–685, 1989. [Crossref]
  • A. Nicholls, D. L. Mobley, P. J. Guthrie, J. D. Chodera, and V. S. Pande. Predicting small-molecule solvation free energies: An informal blind test for computational chemistry. Journal of Medicinal Chemistry, 51(4):769–79, 2008. [Crossref]
  • S. Osher and R. P. Fedkiw. Level set methods: An overview and some recent results. J. Comput. Phys., 169(2):463– 502, 2001.
  • S. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 27(4):919–940, 1990. [Crossref]
  • S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1):12–49, 1988.
  • P. Perona and J. Malik. Scale-space and edge-detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, 1990. [Crossref]
  • M. Raberto, E. Scalas, and F. Mainardi. Waiting-times and returns in high-frequency financial data: an empirical study. Physica A, 314:749–755, 2002.
  • L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60(1- 4):259–268, 1992. [Crossref]
  • L. Sabatelli, S. Keating, J. Dudley, and P. Richmond. Waiting time distributions in financial markets. Eur.Phys.J.B, 27:273–275, 2002. [Crossref]
  • M. F. Sanner, A. J. Olson, and J. C. Spehner. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers, 38:305–320, 1996. [Crossref][PubMed]
  • G. Sapiro and D. L. Ringach. Anisotropic diffusion of multivalued images with applications to color filtering. Image Processing, IEEE Transactions on, 5(11):1582–1586, 1996. [Crossref]
  • J. A. Sethian. Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys., 169(2):503–555, 2001.
  • N. Sochen, R. Kimmel, and R. Malladi. A general framework for low level vision. Image Processing, IEEE Transactions on, 7(3):310–318, 1998. [Crossref]
  • H. Soltanianzadeh, J. P. Windham, and A. E. Yagle. A multidimensional nonlinear edge-preserving filter for magneticresonace image-restoration. IEEE Transactions on Image Processing, 4(2):147–161, 1995. [Crossref]
  • Y. H. Sun, P. R. Wu, G. W. Wei, and G. Wang. Evolution-operator-based single-step method for image processing. Int. J. Biomed. Imaging, 83847:1–27, 2006. [PubMed]
  • T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface processing via normal maps. Acm Transactions on Graphics, 22(4):1012–1033, 2003. [Crossref]
  • J. A. Wagoner and N. A. Baker. Assessing implicit models for nonpolar mean solvation forces: the importance of dispersion and volume terms. Proceedings of the National Academy of Sciences of the United States of America, 103(22):8331–6, 2006. [Crossref]
  • Y. Wang, G. W. Wei, and S.-Y. Yang. Partial differential equation transform – Variational formulation and Fourier analysis. International Journal for Numerical Methods in Biomedical Engineering, 27:1996–2020, 2011.
  • Y. Wang, G. W. Wei, and S.-Y. Yang. Selective extraction of entangled textures via adaptive pde transform. International Journal in Biomedical Imaging, 2012:958142, 2012.
  • Y. Wang, G. W. Wei, and S.-Y. Yang. Iterative filtering decomposition based on local spectral evolution kernel. Journal of Scientific Computing, pages DOI: 10.1007/s10915–011–9496–0, accepted, 2011. [Crossref]
  • Y. Wang, G. W. Wei, and S.-Y. Yang. Mode decomposition evolution equations. Journal of Scientific Computing, accepted,2011.
  • G. W. Wei. Generalized Perona-Malik equation for image restoration. IEEE Signal Processing Letters, 6(7):165–167, 1999. [Crossref]
  • G. W. Wei. Differential geometry based multiscale models. Bulletin of Mathematical Biology, 72:1562 – 1622, 2010.
  • G. W. Wei and Y. Q. Jia. Synchronization-based image edge detection. Europhysics Letters, 59(6):814–819, 2002. [Crossref]
  • G. W. Wei, Q. Zheng, Z. Chen, and K. Xia. Differential geometry based ion transport models. SIAM Review, 54(4), 2012.
  • T. P. Witelski and M. Bowen. ADI schemes for higher-order nonlinear diffusion equations. Applied Numerical Mathematics, 45(2-3):331–351, 2003. [Crossref]
  • A. Witkin. Scale-space filtering: A new approach to multi-scale description. Proceedings of IEEE International Conference on Acoustic Speech Signal Processing, 9:150–153, 1984.
  • M. Xu and S. L. Zhou. Existence and uniqueness of weak solutions for a fourth-order nonlinear parabolic equation. Journal of Mathematical Analysis and Applications, 325(1):636–654, 2007.
  • Y. You and M. Kaveh. Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 9(10):1723–1730, 2002.
  • S. N. Yu, W. H. Geng, and G. W. Wei. Treatment of geometric singularities in implicit solvent models. Journal of Chemical Physics, 126:244108, 2007.
  • S. N. Yu and G. W. Wei. Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities. J. Comput. Phys., 227:602–632, 2007.
  • S. N. Yu, Y. C. Zhou, and G. W. Wei. Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces. J. Comput. Phys., 224(2):729–756, 2007.
  • G. Zaslavsky. Fractional kinetic equation for hamiltonian chaos.chaotic advection, tracer dynamics and turbulent dispersion. Phys.D, 76:110–122, 1994.
  • Y. Zhang, C. Bajaj, and G. Xu. Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Communications in Numerical Methods in Engineering, 25:1–18, 2009.
  • Y. Zhang, G. Xu, and C. Bajaj. Quality meshing of implicit solvation models of biomolecular structures. Computer Aided Geometric Design, 23(6):510–30, 2006. [Crossref][PubMed]
  • S. Zhao and G. W. Wei. High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J. Comput. Phys., 200(1):60–103, 2004.
  • Q. Zheng, D. Chen, and G. W. Wei. Second-order Poisson-Nernst-Planck solver for ion transport. Journal of Comput. Phys., 230:5239–5262, 2011.
  • Q. Zheng and G. W. Wei. Poisson-Boltzmann-Nernst-Planck model. Journal of Chemical Physics, 134:194101, 2011.
  • Q. Zheng, S. Y. Yang, and G. W. Wei. Molecular surface generation using PDE transform. International Journal for Numerical Methods in Biomedical Engineering, 28:291–316, 2012.
  • Y. C. Zhou and G. W. Wei. On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method. J. Comput. Phys., 219(1):228–246, 2006.
  • Y. C. Zhou, S. Zhao, M. Feig, and G. W. Wei. High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. Comput. Phys., 213(1):1–30, 2006.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.