Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 22 | 4 | 321-327

Tytuł artykułu

The Formal Construction of Fuzzy Numbers

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this article, we continue the development of the theory of fuzzy sets [23], started with [14] with the future aim to provide the formalization of fuzzy numbers [8] in terms reflecting the current state of the Mizar Mathematical Library. Note that in order to have more usable approach in [14], we revised that article as well; some of the ideas were described in [12]. As we can actually understand fuzzy sets just as their membership functions (via the equality of membership function and their set-theoretic counterpart), all the calculations are much simpler. To test our newly proposed approach, we give the notions of (normal) triangular and trapezoidal fuzzy sets as the examples of concrete fuzzy objects. Also -cuts, the core of a fuzzy set, and normalized fuzzy sets were defined. Main technical obstacle was to prove continuity of the glued maps, and in fact we did this not through its topological counterpart, but extensively reusing properties of the real line (with loss of generality of the approach, though), because we aim at formalizing fuzzy numbers in our future submissions, as well as merging with rough set approach as introduced in [13] and [11]. Our base for formalization was [9] and [10].

Wydawca

Rocznik

Tom

22

Numer

4

Strony

321-327

Opis fizyczny

Daty

wydano
2014-12-01
online
2014-12-31
otrzymano
2014-12-31

Twórcy

  • Institute of Informatics University of Białystok Akademicka 2, 15-267 Białystok Poland

Bibliografia

  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  • [2] Józef Białas. Properties of the intervals of real numbers. Formalized Mathematics, 3(2): 263-269, 1992.
  • [3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
  • [4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  • [5] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
  • [6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  • [7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  • [8] Didier Dubois and Henri Prade. Operations on fuzzy numbers. International Journal of System Sciences, 9(6):613-626, 1978.
  • [9] Didier Dubois and Henri Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.
  • [10] Didier Dubois and Henri Prade. Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems, 17(2-3):191-209, 1990.
  • [11] Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371-385, 2014. doi:10.3233/FI-2014-1129.[WoS][Crossref]
  • [12] Adam Grabowski. On the computer certification of fuzzy numbers. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), Federated Conference on Computer Science and Information Systems, pages 51-54, 2013.
  • [13] Adam Grabowski. Basic properties of rough sets and rough membership function. Formalized Mathematics, 12(1):21-28, 2004.
  • [14] Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama. The concept of fuzzy set and membership function and basic properties of fuzzy set operation. Formalized Mathematics, 9(2):351-356, 2001.
  • [15] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Basic properties of fuzzy set operation and membership function. Formalized Mathematics, 9(2):357-362, 2001.
  • [16] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
  • [17] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
  • [18] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
  • [19] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.
  • [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  • [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
  • [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
  • [23] Lotfi Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_forma-2014-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.