Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 22 | 2 | 105-110

Tytuł artykułu

Lagrange’s Four-Square Theorem

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This article provides a formalized proof of the so-called “the four-square theorem”, namely any natural number can be expressed by a sum of four squares, which was proved by Lagrange in 1770. An informal proof of the theorem can be found in the number theory literature, e.g. in [14], [1] or [23]. This theorem is item #19 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

Słowa kluczowe

Wydawca

Rocznik

Tom

22

Numer

2

Strony

105-110

Opis fizyczny

Daty

otrzymano
2014-06-04
online
2015-02-05

Twórcy

  • Suginami-ku Matsunoki 6, 3-21 Tokyo, Japan

Bibliografia

  • [1] Alan Baker. A Concise Introduction to the Theory of Numbers. Cambridge University Press, 1984.
  • [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
  • [3] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.
  • [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
  • [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
  • [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
  • [7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
  • [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
  • [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
  • [10] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
  • [11] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
  • [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
  • [13] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317–321, 1998.
  • [14] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1980.
  • [15] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179–186, 2004.
  • [16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
  • [17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.
  • [18] Xiquan Liang, Li Yan, and Junjie Zhao. Linear congruence relation and complete residue systems. Formalized Mathematics, 15(4):181–187, 2007. doi:10.2478/v10037-007-0022-7.[Crossref]
  • [19] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335–338, 1997.
  • [20] Christoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3): 247–252, 2008. doi:10.2478/v10037-008-0029-8.[Crossref]
  • [21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
  • [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
  • [23] Hideo Wada. The World of Numbers (in Japanese). Iwanami Shoten, 1984.
  • [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
  • [25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_forma-2014-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.