Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2014 | 2 | 1 |

Tytuł artykułu

Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology

Treść / Zawartość

Warianty tytułu

Języki publikacji



In this paper, we provide a tutorial on multivariate extreme value methods which allows to estimate the risk associated with rare events occurring jointly. We draw particular attention to issues related to extremal dependence and we insist on the asymptotic independence feature. We apply the multivariate extreme value theory on two data sets related to hydrology and meteorology: first, the joint flooding of two rivers, which puts at risk the facilities lying downstream the confluence; then the joint occurrence of high speed wind and low air temperatures, which might affect overhead lines.








Opis fizyczny




  • EDF R&D, 1, avenue du Général de Gaulle, 92141 CLAMART Cedex, France
  • EDF R&D, 6 quai Watier, 78401 Chatou Cedex, France
  • EDF R&D, 6 quai Watier, 78401 Chatou Cedex, France


  • [1] Beirlant, J., Y. Goegebeur, J. Teugels, and J. Segers (2004). Statistics of Extremes, Theory and Applications. John Wiley & Sons, Ltd., Chichester.
  • [2] Berman, S. M. (1961/1962). Convergence to bivariate limiting extreme value distributions. Ann. Inst. Statist. Math. 13, 217–223.
  • [3] Bruun, J. T. and J. A. Tawn (1998). Comparison of approaches for estimating the probability of coastal flooding. J. R. Stat. Soc. Ser. C Appl. Stat. 47(3), 405–423.
  • [4] Buishand, T. (1989). Statistics of extremes in climatology. Statistica Neerlandica 43(1), 1–30. [Crossref]
  • [5] Buishand, T. A. (1991). Extreme rainfall estimation by combining data from several sites. Hydrological Sciences Journal 36(4), 345–365. [Crossref]
  • [6] Capéraà, P. and A.-L. Fougères (2000). Estimation of a bivariate extreme value distribution. Extremes 3(4), 311–329 (2001). [Crossref]
  • [7] Capéraà, P., A.-L. Fougères, and C. Genest (1997). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3), 567–577. [Crossref]
  • [8] Carter, D. J. T. and P. G. Challenor (1981). Estimating return values of environmental parameters. Q. J. R. Meteorological Soc. 107(451), 259–266.
  • [9] Chebana, F. and T. B. M. J. Ouarda (2011). Multivariate quantiles in hydrological frequency analysis. Environmetrics 22(1), 63–78. [WoS][Crossref]
  • [10] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag London, Ltd., London.
  • [11] Coles, S. G. and J. A. Tawn (1994). Statistical methods for multivariate extremes: An application to structural design. J. R. Stat. Soc. Ser. C Appl. Stat. 43(1), pp. 1–48. [Crossref]
  • [12] Dales, M. Y. and D. W. Reed (2001). Regional flood and storm hazard assessment. Wallingford, Institute of Hydrology.
  • [13] de Carvalho, M. and A. Ramos (2012). Bivariate extreme statistics, II. REVSTAT 10(1), 83–107.
  • [14] de Haan, L. and J. de Ronde (1998). Sea and wind: multivariate extremes at work. Extremes 1(1), 7–45. [Crossref]
  • [15] de Haan, L. and T. T. Pereira (2006). Spatial extremes: models for the stationary case. Ann. Statist. 34(1), 146–168. [Crossref]
  • [16] Deheuvels, P. (1991). On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Statist. Probab. Lett. 12(5), 429–439. [Crossref]
  • [17] Di Bernardino, E., V. Maume-Deschamps, and C. Prieur (2013). Estimating a bivariate tail: a copula based approach. J. Multivariate Anal. 119, 81–100. [WoS]
  • [18] Dupuis, D. J. and B. L. Jones (2006). Multivariate extreme value theory and its usefulness in understanding risk. N. Am. Actuar. J. 10(4), 1–27.
  • [19] Durante, F. and G. Salvadori (2010). On the construction of multivariate extreme value models via copulas. Environmetrics 21(2), 143–161. [WoS]
  • [20] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997). Modelling Extremal Events for Insurance and Finance. Berlin: Springer.
  • [21] Falk, M. and R. Michel (2006). Testing for tail independence in extreme value models. Ann. Inst. Statist. Math. 58(2), 261–290. [Crossref]
  • [22] Galambos, J., J. Lechner, and E. Simiu (Eds.) (1994). Extreme Value Theory and Applications, Dordrecht. Kluwer.
  • [23] Genest, C. and L.-P. Rivest (1989). A characterization of Gumbel’s family of extreme value distributions. Statist. Probab. Lett. 8(3), 207–211. [Crossref]
  • [24] Gumbel, E. J. (1960). Bivariate exponential distributions. J. Amer. Statist. Assoc. 55, 698–707. [Crossref]
  • [25] Hall, P. and N. Tajvidi (2000). Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6(5), 835–844. [Crossref][WoS]
  • [26] Heffernan, J. E. (2000). A directory of coefficients of tail dependence. Extremes 3(3), 279–290. [Crossref]
  • [27] Hüsler, J. and D. Li (2009). Testing asymptotic independence in bivariate extremes. J. Statist. Plann. Inference 139(3), 990–998. [Crossref]
  • [28] Leadbetter, M. R., G. Lindgren, and H. Rootzén (1983). Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York-Berlin.
  • [29] Ledford, A. W. and J. A. Tawn (1996). Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169–187. [Crossref]
  • [30] Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. J. Bank. Financ. 24(7), 1097 – 1130. [Crossref]
  • [31] Maulik, K., S. Resnick, and H. Rootzén (2002). Asymptotic independence and a network traffic model. J. Appl. Probab. 39(4), 671–699.
  • [32] Mole, N., C. W. Anderson, S. Nadarajah, and C. Wright (1995). A generalized pareto distribution model for high concentrations in short-range atmospheric dispersion. Environmetrics 6(6), 595–606. [Crossref]
  • [33] Morton, I., J. Bowers, and G. Mould (1997). Estimating return period wave heights and wind speeds using a seasonal point process model. Coastal Engineering 31(1–4), 305 – 326. [Crossref]
  • [34] Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer. Second edition.
  • [35] Parey, S., T. T. H. Hoang, and D. Dacunha-Castelle (2010). Different ways to compute temperature return levels in the climate change context. Environmetrics 21(7-8), 698–718. [Crossref][WoS]
  • [36] Poon, S.-H., M. Rockinger, and J. Tawn (2004). Extreme value dependence in financial markets: Diagnostics, models, and financial implications. Rev. Financ. Stud. 17(2), 581–610.
  • [37] Resnick, S. and H. Rootzén (2000). Self-similar communication models and very heavy tails. Ann. Appl. Probab. 10(3), 753–778.
  • [38] Rincón, A. (2012). An index for climate change: a multivariate time series approach. Environmetrics 23(7), 617–622. [WoS][Crossref]
  • [39] Salvadori, G., C. D. Michele, N. Kottegoda, and R. Rosso (2007). Extremes in Nature - An Approach Using Copulas. New York: Springer.
  • [40] Schlather, M. (2001). Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution. Statist. Probab. Lett. 53(3), 325–329. [Crossref]
  • [41] Sibuya, M. (1960). Bivariate extreme statistics. I. Ann. Inst. Statist. Math. Tokyo 11, 195–210.
  • [42] Starica, C. (1999). Multivariate extremes for models with constant conditional correlations. J. Empir. Financ. 6(5), 515 – 553. [Crossref]
  • [43] Tawn, J. A. (1988). Bivariate extreme value theory: models and estimation. Biometrika 75(3), 397–415. [Crossref]
  • [44] Tawn, J. A. (1990). Modelling multivariate extreme value distributions. Biometrika 77(2), pp. 245–253. [Crossref][WoS]
  • [45] Tsai, Y.-L., D. J. Dupuis, and D. J. Murdoch (2013). A robust test for asymptotic independence of bivariate extremes. Statistics 47(1), 172–183. [WoS][Crossref]
  • [46] Tsai, Y.-L., D. J. Murdoch, and D. J. Dupuis (2011). Influence measures and robust estimators of dependence in multivariate extremes. Extremes 14(4), 343–363. [WoS][Crossref]
  • [47] Weller, G. B., D. S. Cooley, and S. R. Sain (2012). An investigation of the pineapple express phenomenon via bivariate extreme value theory. Environmetrics 23(5), 420–439. [Crossref][WoS]
  • [48] Zhang, D., M. T. Wells, and L. Peng (2008). Nonparametric estimation of the dependence function for a multivariate extreme value distribution. J. of Multivariate Anal. 99(4), 577 – 588.
  • [49] Zhang, Z., Y. Qi, and X. Ma (2011). Asymptotic independence of correlation coefficients with application to testing hypothesis of independence. Electron. J. Statist. 5, 342–372.[Crossref]

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.