Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 2 | 1 |

Tytuł artykułu

The truncated matrix trigonometric moment problem with an open gap

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper is a continuation of our previous investigations on the truncated matrix trigonometric moment problem in Ukrainian Math. J., 2011, 63, no. 6, 786-797, and Ukrainian Math. J., 2013, 64, no. 8, 1199- 1214. In this paper we shall study the truncated matrix trigonometric moment problem with an additional constraint posed on the matrix measure MT(δ), δ ∈ B(T), generated by the seeked function M(x): MT(∆) = 0, where ∆ is a given open subset of T (called a gap). We present necessary and sufficient conditions for the solvability of the moment problem with a gap. All solutions of the moment problem with a gap can be constructed by a Nevanlinna-type formula.

Wydawca

Czasopismo

Rocznik

Tom

2

Numer

1

Opis fizyczny

Daty

otrzymano
2014-04-25
zaakceptowano
2014-10-17
online
2014-12-12

Twórcy

  • School of Mathematics and Mechanics, Karazin Kharkiv National University,
    Svobody Sq., 4, 61022 Kharkiv, Ukraine

Bibliografia

  • ---
  • [1] Ando T., Truncated moment problems for operators, Acta Sci. Math. (Szeged), 1970, 31, no. 4, 319-334
  • [2] Berezanskii Ju.M., Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, RI, 1968 (Russian edition: Naukova Dumka, Kiev, 1965)
  • [3] Chen G.-N., Hu Y.-J., On the multiple Nevanlinna-Pick matrix interpolation in the class 'p and the Carathéodory matrix coefficient problem, Linear Algebra Appl., 1998, 283, 179-203
  • [4] Chumakin M.E., Solutions of the truncated trigonometric moment problem, Uchen. zapiski Ulyanovskogo pedag. instituta, 1966, 20, issue 4, 311-355, (in Russian)
  • [5] Fritzsche B., Kirstein B., Thematricial Carathéodory problem in both nondegenerate and degenerate cases, Oper. Theory Adv. Appl., 2006, 165, 251-290
  • [6] Ilmushkin G.M., Turitsyn A.B., A truncated operator trigonometric moment problem, Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 7, 17-21, (in Russian)
  • [7] Inin O.T., A truncated matrix trigonometric moment problem, Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 5 (84), 49-57 (in Russian)
  • [8] Krein M.G., Nudelman A.A., The Markov moment problem and extremal problems. Ideas and problems of P. L. Cebysev and A. A. Markov and their further development, Translations of Mathematical Monographs. Vol. 50. Providence, R.I., American Mathematical Society (AMS), 1977
  • [9] Zagorodnyuk S.M., The truncated matrix trigonometric moment problem: the operator approach, Ukrainian Math. J., 2011, 63, no. 6, 786-797 [WoS]
  • [10] Zagorodnyuk S.M., Nevanlinna formula for the truncated matrix trigonometric moment problem, Ukrainian Math. J., 2013, 64, no. 8, 1199-1214 [11] Zagorodnyuk S.M., Generalized resolvents of symmetric and isometric operators: the Shtraus approach, Ann. Funct. Anal., 2013, http://www.emis.de/journals/AFA/

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_conop-2014-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.