Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Strony
28-36
Opis fizyczny
Daty
otrzymano
2013-05-28
zaakceptowano
2013-08-06
online
2013-09-16
Twórcy
autor
-
Department of Mathematics, University of Helsinki,
Helsinki 00014, Finland, antti.i.perala@helsinki.fi
autor
-
Department of Mathematics, University of Reading,
Whiteknights, P.O. Box 220, Reading RG6 6AX, U.K., j.a.virtanen@reading.ac.uk
autor
-
Department of Mathematics and Statistics,
State University of New York at Albany, Albany, N.Y. 12222, U.S.A., lwolf-christensen@albany.edu
Bibliografia
- [1] A. Böttcher and B. Silbermann, Analysis of Toeplitz operators. Second edition, Springer-Verlag, Berlin, 2006.
- [2] J. B. Garnett, Bounded analytic functions. Revised first edition. Graduate Texts in Mathematics, 236. Springer, NewYork, 2007.
- [3] L. A. Coburn, Weyl’s theorem for nonnormal operators. Michigan Math. J. 13 1966 285–288.
- [4] I. C. Gohberg, On the number of solutions of a homogeneous singular integral equation with continuous coefficients.(Russian) Dokl. Akad. Nauk SSSR 122 1958 327–330.
- [5] I. Gohberg and N. Krupnik, One-dimensional linear singular integral equations, Birkhäuser Verlag, Basel, 1992.
- [6] P. Koosis, Introduction to Hp spaces. Second edition. With two appendices by V. P. Havin [Viktor Petrovich Khavin].Cambridge Tracts in Mathematics, 115. Cambridge University Press, Cambridge, 1998.
- [7] S. G. Mihlin, Singular integral equations. (Russian) Uspehi Matem. Nauk (N.S.) 3, (1948). no. 3(25), 29–112.
- [8] N. I. Muskhelishvili, Singular integral equations. Second edition. Dover Publications, New York, 1992.
- [9] M. Papadimitrakis and J. A. Virtanen, Hankel and Toeplitz transforms on H1: continuity, compactness and Fredholmproperties. Integral Equations Operator Theory 61 (2008), no. 4, 573–591.
- [10] I. B. Simonenko, Riemann’s boundary value problem with a continuous coefficient. (Russian) Dokl. Akad. Nauk SSSR124 1959 278–281.
- [11] I. B. Simonenko, Some general questions in the theory of the Riemann boundary problem. Math. USSR Izvestiya 2(1968), 1091–1099.
- [12] E. Shargorodsky, J. F. Toland, A Riemann-Hilbert problem and the Bernoulli boundary condition in the variationaltheory of Stokes waves. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 1, 37–52.
- [13] E. Shargorodsky, J. F. Toland, Bernoulli free-boundary problems. Mem. Amer. Math. Soc. 196 (2008), no. 914,viii+70 pp.
- [14] E. Shargorodsky, J. A. Virtanen, Uniqueness results for the Riemann-Hilbert problem with a vanishing coefficient.Integral Equations Operator Theory 56 (2006), no. 1, 115-127.
- [15] J. A. Virtanen, A remark on the Riemann-Hilbert problem with a vanishing coefficient. Math. Nachr. 266 (2004),85–91.
- [16] J. A. Virtanen, Fredholm theory of Toeplitz operators on the Hardy space H1. Bull. London Math. Soc. 38 (2006),no. 1, 143–155.
- [17] D. Vukotic, A note on the range of Toeplitz operators. (English summary) Integral Equations Operator Theory 50(2004), no. 4, 565–567.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_conop-2012-0004