Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 1 | 1-10

Tytuł artykułu

An overview of some recent developments on the Invariant Subspace Problem

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.

Twórcy

  • Université de Lyon; CNRS; Université Lyon 1; INSA de Lyon; Ecole Centrale de Lyon, CNRS, UMR 5208, Institut Camille Jordan 43 bld. du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
  • School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

Bibliografia

  • Ambrozie C., Müller V., Invariant subspaces for polynomially bounded operators. J. Funct. Anal., 2004, 213, 321–345
  • Androulakis G., Dodos P., Sirotkin G., Troitsky V.G., Classes of strictly singular operators and their products, Israel J. Math., (to appear)
  • Anisca R., Troitsky V.G., Minimal vectors of positive operators, Indiana Univ. Math. J., 2005, 54, 861–872[Crossref]
  • Ansari S., Enflo P., Extremal vectors and invariant subspaces, Trans. Amer. Math. Soc., 1998, 350, 539–558
  • Argyros S.A., Haydon R.G., A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem, Acta Math., 2011, 206, 1–54
  • Aronszajn N., Smith K.T., Invariant subspaces of completely continuous operators, Ann. of Math. (2), 1954, 60, 345–350[Crossref]
  • Atzmon A., An operator without invariant subspace on a nuclear Fréchet space, Ann. of Math. (2), 1983, 117, 669–694
  • Beauzamy B., Un opérateur sans sous-espace invariant: simplification de l’exemple de P. Enflo, Integral Equations Operator Theory, 1985, 8, 314–384
  • Bercovici H., Foias C., Pearcy C., Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional conference series in mathematics, 56. A.M.S., Providence, 1985
  • Bercovici H., Foias C., Pearcy C., Two Banach space methods and dual operator algebras, J. Funct. Anal., 1988, 78, 306–345 [Crossref]
  • Bernstein A.R., Robinson A., Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific J. Math., 1966, 16, 421–431
  • Blecher D.P., Davie A.M., Invariant subspaces for an operator on L2 (Π) composed of a multiplication and a translation, J. Operator Theory, 1990, 23, 115–123
  • Brown S.W., Some invariant subspaces for subnormal operators, Integral Equations Operator Theory, 1978, 1, 310–333
  • Brown S.W., Chevreau B., Pearcy C., On the structure of contraction operators II, J. Funct. Anal., 1988, 76, 30–55 [Crossref]
  • Caradus S.R., Universal operators and invariant subspaces, Proc. Amer. Math. Soc., 1969, 23, 526–527 [Crossref]
  • Casazza P., Lohman R., A general construction of spaces of the type of R. C. James, Canad. J. Math., 1975, 27, 1263–1270
  • Chalendar I., Fricain E., Popov A.I., Timotin D., Troitsky V.G., Finitely strictly singular operators between James spaces, J. Funct. Anal., 2009, 256, 1258–1268
  • Chalendar I., Partington J.R., Convergence properties of minimal vectors for normal operators and weighted shifts, Proc. Amer. Math. Soc., 2005, 133, 501–510
  • Chalendar I., Partington J.R., Variations on Lomonosov’s theorem via the technique of minimal vectors, Acta Sci. Math. (Szeged), 2005, 71, 603–617
  • Chalendar I., Partington J.R., Invariant subspaces for products of Bishop operators, Acta Sci. Math. (Szeged), 2008, 74, 719–727
  • Chalendar I., Partington J.R., Modern approaches to the invariant-subspace problem, Cambridge Tracts in Mathematics, 188, Cambridge University Press, Cambridge, 2011
  • Cima J.A., Thomson J., Wogen W., On some properties of composition operators, Indiana Univ. Math. J., 1974/75, 24, 215–220
  • Davie A.M., Invariant subspaces for Bishop’s operators, Bull. London Math. Soc., 1974, 6, 343–348 [Crossref]
  • Delpech S., A short proof of Pitt’s compactness theorem, Proc. Amer. Math. Soc., 2009, 137, 1371–1372
  • Enflo P., On the invariant subspace problem in Banach spaces, Séminaire Maurey–Schwartz (1975–1976) Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14–15, 7 pp., Centre Math., École Polytech., Palaiseau, 1976
  • Enflo P., On the invariant subspace problem for Banach spaces, Acta Math., 1987, 158, 213–313
  • Enflo P., Extremal vectors for a class of linear operators, Functional analysis and economic theory (Samos, 1996), 61–64, Springer, Berlin, 1998
  • Enflo P., Hõim T., Some results on extremal vectors and invariant subspaces, Proc. Amer. Math. Soc., 2003, 131, 379–387
  • Fabian M., Halala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional analysis and infinite geometry, CMS Books in Mathematics, Springer-Verlag, New-York, 2001
  • Flattot A., Hyperinvariant subspaces for Bishop-type operators, Acta Sci. Math. (Szeged), 2008, 74, 689–718
  • Fulton W., Algebraic topology, Springer–Verlag, New York, 1995
  • Gallardo-Gutiérrez E.A., Gorkin P., Minimal invariant subspaces for composition operators, J. Math. Pures Appl. (9), 2011, 95, 245–259 [Crossref]
  • Gowers W.T., Maurey B., Banach spaces with small spaces of operators, Math. Ann., 1997, 307, 543–568
  • Grünbaum B., Convex polytopes, 2nd edition, Graduate Texts in Mathematics, 221, Springer–Verlag, New York, 2003
  • James R.C., A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A., 1951, 37, 174–177
  • Kim H.J., Hyperinvariant subspaces for operators having a normal part, Oper. Matrices, 2011, 5, 487–494
  • Kumar R., Partington J.R., Weighted composition operators on Hardy and Bergman spaces, Recent advances in operator theory, operator algebras, and their applications, 157–167, Oper. Theory Adv. Appl., 153, Birkhäuser, Basel, 2005
  • Lindenstrauss J., Tzafriri L., Classical Banach spaces. I, Springer-Verlag, Berlin, 1977
  • Littlewood J.E., On inequalities in the theory of functions, Proc. London Math. Soc. (2), 1925, 23, 481–519
  • Lomonosov V.I., Invariant subspaces for operators commuting with compact operators, Funct. Anal. Appl., 1973, 7, 213–214
  • MacDonald G.W., Invariant subspaces for Bishop-type operators, J. Funct. Anal., 1990, 91, 287–311
  • Maslyuchenko V., Plichko A., Quasireflexive locally convex spaces without Banach subspaces, Teor. Funktsiˇı Funktsional. Anal. i Prilozhen., 1985, 44, 78–84 (in Russian), translation in J. Soviet Math., 1990, 48, 307–312
  • Matache V., On the minimal invariant subspaces of the hyperbolic composition operator, Proc. Amer. Math. Soc., 1993, 119, 837–841
  • Milman V.D., Operators of class C0 and C0*, Teor. Funktsiˇı Funkcional. Anal. i Priložen., 1970, 10, 15–26
  • Mortini R., Cyclic subspaces and eigenvectors of the hyperbolic composition operator, Travaux mathématiques, Fasc. VII, 69–79, Sém. Math. Luxembourg, Centre Univ. Luxembourg, Luxembourg, 1995
  • Nordgren E., Rosenthal P., Wintrobe F.S., Invertible composition operators on Hp, J. Funct. Anal., 1987, 73, 324–344
  • Partington J.R., Pozzi E., Universal shifts and composition operators, Oper. Matrices, 2011, 5, 455–467
  • Pisier G., A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc., 1997, 10, 351–369 [Crossref]
  • Plichko A., Superstrictly singular and superstrictly cosingular operators, Functional analysis and its applications, 2004, North-Holland Math. Stud., 197, Elsevier, Amsterdam, 239–255
  • Popov A.I., Schreier singular operators, Houston J. Math., 2009, 35, 209–222
  • Pozzi E., Universality of weighted composition operators on L2([0, 1]) and Sobolev spaces, Acta Sci. Math. (Szeged), (to appear)
  • Read C., A solution to the invariant subspace problem, Bull. London Math. Soc., 1984, 16, 337–401 [Crossref]
  • Read C., A solution to the invariant subspace problem on the space l1, Bull. London Math. Soc., 1985, 17, 305–317 [Crossref]
  • Read C., A short proof concerning the invariant subspace problem, J. London Math. Soc. (2), 1986, 34, 335–348
  • Read C., Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2), 1997, 56, 595–606 [Crossref]
  • Read C., Strictly singular operators and the invariant subspace problem, Studia Math., 1999, 132, 203–226
  • Singer I., Bases in Banach Spaces I, Springer-Verlag, New York–Berlin, 1970
  • Sari B., Schlumprecht Th., Tomczak-Jaegermann N., Troitsky V.G., On norm closed ideals in L(lp⊗ lq), Studia Math., 2007, 179, 239–262
  • Thomson J.E., Invariant subspaces for algebras of subnormal operators, Proc. Amer. Math. Soc., 1986, 96, 462–464 [Crossref]
  • Troitsky V.G., Lomonosov’s theorem cannot be extended to chains of four operators, Proc. Amer. Math. Soc., 2000, 128, 521–525
  • Troitsky V.G., Minimal vectors in arbitrary Banach spaces, Proc. Amer. Math. Soc., 2004, 132, 1177–1180
  • Ziegler G.M., Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1994

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_conop-2012-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.