PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 1 | 1-10
Tytuł artykułu

An overview of some recent developments on the Invariant Subspace Problem

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an account of some recent approaches to the Invariant Subspace Problem. It contains a brief historical account of the problem, and some more detailed discussions of specific topics, namely, universal operators, the Bishop operators, and Read’s Banach space counter-example involving a finitely strictly singular operator.
Twórcy
  • Université de Lyon; CNRS; Université Lyon 1; INSA de Lyon; Ecole Centrale de Lyon, CNRS, UMR 5208, Institut Camille Jordan 43 bld. du 11 novembre 1918, F-69622 Villeurbanne Cedex, France, chalenda@math.univ-lyon1.fr
Bibliografia
  • Ambrozie C., Müller V., Invariant subspaces for polynomially bounded operators. J. Funct. Anal., 2004, 213, 321–345
  • Androulakis G., Dodos P., Sirotkin G., Troitsky V.G., Classes of strictly singular operators and their products, Israel J. Math., (to appear)
  • Anisca R., Troitsky V.G., Minimal vectors of positive operators, Indiana Univ. Math. J., 2005, 54, 861–872[Crossref]
  • Ansari S., Enflo P., Extremal vectors and invariant subspaces, Trans. Amer. Math. Soc., 1998, 350, 539–558
  • Argyros S.A., Haydon R.G., A hereditarily indecomposable L∞-space that solves the scalar-plus-compact problem, Acta Math., 2011, 206, 1–54
  • Aronszajn N., Smith K.T., Invariant subspaces of completely continuous operators, Ann. of Math. (2), 1954, 60, 345–350[Crossref]
  • Atzmon A., An operator without invariant subspace on a nuclear Fréchet space, Ann. of Math. (2), 1983, 117, 669–694
  • Beauzamy B., Un opérateur sans sous-espace invariant: simplification de l’exemple de P. Enflo, Integral Equations Operator Theory, 1985, 8, 314–384
  • Bercovici H., Foias C., Pearcy C., Dual algebras with applications to invariant subspaces and dilation theory, CBMSRegional conference series in mathematics, 56. A.M.S., Providence, 1985
  • Bercovici H., Foias C., Pearcy C., Two Banach space methods and dual operator algebras, J. Funct. Anal., 1988, 78,306–345[Crossref]
  • Bernstein A.R., Robinson A., Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific J.Math., 1966, 16, 421–431
  • Blecher D.P., Davie A.M., Invariant subspaces for an operator on L2 (Π) composed of a multiplication and a translation,J. Operator Theory, 1990, 23, 115–123
  • Brown S.W., Some invariant subspaces for subnormal operators, Integral Equations Operator Theory, 1978, 1,310–333
  • Brown S.W., Chevreau B., Pearcy C., On the structure of contraction operators II, J. Funct. Anal., 1988, 76, 30–55[Crossref]
  • Caradus S.R., Universal operators and invariant subspaces, Proc. Amer. Math. Soc., 1969, 23, 526–527[Crossref]
  • Casazza P., Lohman R., A general construction of spaces of the type of R. C. James, Canad. J. Math., 1975, 27,1263–1270
  • Chalendar I., Fricain E., Popov A.I., Timotin D., Troitsky V.G., Finitely strictly singular operators between Jamesspaces, J. Funct. Anal., 2009, 256, 1258–1268
  • Chalendar I., Partington J.R., Convergence properties of minimal vectors for normal operators and weighted shifts,Proc. Amer. Math. Soc., 2005, 133, 501–510
  • Chalendar I., Partington J.R., Variations on Lomonosov’s theorem via the technique of minimal vectors, Acta Sci.Math. (Szeged), 2005, 71, 603–617
  • Chalendar I., Partington J.R., Invariant subspaces for products of Bishop operators, Acta Sci. Math. (Szeged), 2008,74, 719–727
  • Chalendar I., Partington J.R., Modern approaches to the invariant-subspace problem, Cambridge Tracts in Mathematics,188, Cambridge University Press, Cambridge, 2011
  • Cima J.A., Thomson J., Wogen W., On some properties of composition operators, Indiana Univ. Math. J., 1974/75, 24,215–220
  • Davie A.M., Invariant subspaces for Bishop’s operators, Bull. London Math. Soc., 1974, 6, 343–348[Crossref]
  • Delpech S., A short proof of Pitt’s compactness theorem, Proc. Amer. Math. Soc., 2009, 137, 1371–1372
  • Enflo P., On the invariant subspace problem in Banach spaces, Séminaire Maurey–Schwartz (1975–1976) EspacesLp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14–15, 7 pp., Centre Math., ÉcolePolytech., Palaiseau, 1976
  • Enflo P., On the invariant subspace problem for Banach spaces, Acta Math., 1987, 158, 213–313
  • Enflo P., Extremal vectors for a class of linear operators, Functional analysis and economic theory (Samos, 1996),61–64, Springer, Berlin, 1998
  • Enflo P., Hõim T., Some results on extremal vectors and invariant subspaces, Proc. Amer. Math. Soc., 2003, 131,379–387
  • Fabian M., Halala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional analysis and infinitegeometry, CMS Books in Mathematics, Springer-Verlag, New-York, 2001
  • Flattot A., Hyperinvariant subspaces for Bishop-type operators, Acta Sci. Math. (Szeged), 2008, 74, 689–718
  • Fulton W., Algebraic topology, Springer–Verlag, New York, 1995
  • Gallardo-Gutiérrez E.A., Gorkin P., Minimal invariant subspaces for composition operators, J. Math. Pures Appl. (9),2011, 95, 245–259[Crossref]
  • Gowers W.T., Maurey B., Banach spaces with small spaces of operators, Math. Ann., 1997, 307, 543–568
  • Grünbaum B., Convex polytopes, 2nd edition, Graduate Texts in Mathematics, 221, Springer–Verlag, New York,2003
  • James R.C., A non-reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A., 1951,37, 174–177
  • Kim H.J., Hyperinvariant subspaces for operators having a normal part, Oper. Matrices, 2011, 5, 487–494
  • Kumar R., Partington J.R., Weighted composition operators on Hardy and Bergman spaces, Recent advances inoperator theory, operator algebras, and their applications, 157–167, Oper. Theory Adv. Appl., 153, Birkhäuser,Basel, 2005
  • Lindenstrauss J., Tzafriri L., Classical Banach spaces. I, Springer-Verlag, Berlin, 1977
  • Littlewood J.E., On inequalities in the theory of functions, Proc. London Math. Soc. (2), 1925, 23, 481–519
  • Lomonosov V.I., Invariant subspaces for operators commuting with compact operators, Funct. Anal. Appl., 1973, 7,213–214
  • MacDonald G.W., Invariant subspaces for Bishop-type operators, J. Funct. Anal., 1990, 91, 287–311
  • Maslyuchenko V., Plichko A., Quasireflexive locally convex spaces without Banach subspaces, Teor. Funktsiˇı Funktsional.Anal. i Prilozhen., 1985, 44, 78–84 (in Russian), translation in J. Soviet Math., 1990, 48, 307–312
  • Matache V., On the minimal invariant subspaces of the hyperbolic composition operator, Proc. Amer. Math. Soc.,1993, 119, 837–841
  • Milman V.D., Operators of class C0 and C0*, Teor. Funktsiˇı Funkcional. Anal. i Priložen., 1970, 10, 15–26
  • Mortini R., Cyclic subspaces and eigenvectors of the hyperbolic composition operator, Travaux mathématiques, Fasc.VII, 69–79, Sém. Math. Luxembourg, Centre Univ. Luxembourg, Luxembourg, 1995
  • Nordgren E., Rosenthal P., Wintrobe F.S., Invertible composition operators on Hp, J. Funct. Anal., 1987, 73, 324–344
  • Partington J.R., Pozzi E., Universal shifts and composition operators, Oper. Matrices, 2011, 5, 455–467
  • Pisier G., A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math.Soc., 1997, 10, 351–369[Crossref]
  • Plichko A., Superstrictly singular and superstrictly cosingular operators, Functional analysis and its applications,2004, North-Holland Math. Stud., 197, Elsevier, Amsterdam, 239–255
  • Popov A.I., Schreier singular operators, Houston J. Math., 2009, 35, 209–222
  • Pozzi E., Universality of weighted composition operators on L2([0, 1]) and Sobolev spaces, Acta Sci. Math. (Szeged),(to appear)
  • Read C., A solution to the invariant subspace problem, Bull. London Math. Soc., 1984, 16, 337–401[Crossref]
  • Read C., A solution to the invariant subspace problem on the space l1, Bull. London Math. Soc., 1985, 17, 305–317[Crossref]
  • Read C., A short proof concerning the invariant subspace problem, J. London Math. Soc. (2), 1986, 34, 335–348
  • Read C., Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2), 1997, 56, 595–606[Crossref]
  • Read C., Strictly singular operators and the invariant subspace problem, Studia Math., 1999, 132, 203–226
  • Singer I., Bases in Banach Spaces I, Springer-Verlag, New York–Berlin, 1970
  • Sari B., Schlumprecht Th., Tomczak-Jaegermann N., Troitsky V.G., On norm closed ideals in L(lp⊗ lq), Studia Math.,2007, 179, 239–262
  • Thomson J.E., Invariant subspaces for algebras of subnormal operators, Proc. Amer. Math. Soc., 1986, 96, 462–464[Crossref]
  • Troitsky V.G., Lomonosov’s theorem cannot be extended to chains of four operators, Proc. Amer. Math. Soc., 2000,128, 521–525
  • Troitsky V.G., Minimal vectors in arbitrary Banach spaces, Proc. Amer. Math. Soc., 2004, 132, 1177–1180
  • Ziegler G.M., Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, New York, 1994
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_conop-2012-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.