Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

New insights into the strong formulation finite element method for solving elastostatic and elastodynamic problems

Treść / Zawartość
Warianty tytułu
Języki publikacji
This present paper has a complete and homogeneous presentation of plane stress and plane strain problems using the Strong Formulation Finite Element Method (SFEM). In particular, a greater emphasis is given to the numerical implementation of the governing and boundary conditions of the partial differential system of equations. The paper’s focus is on numerical stability and accuracy related to elastostatic and elastodynamic problems. In the engineering literature, results are mainly reported for isotropic and homogeneous structures. In this paper, a composite structure is investigated. The SFEM solution is compared to the ones obtained using commercial finite element codes. Generally, the SFEM observes fast accuracy and all the results are in very good agreement with the ones presented in literature.
Opis fizyczny
  • [1] Love A.E.H., A Treatise on the Mathematical Theory of Elasticity,Dover, 1944.
  • [2] Timoshenko S., Goodier J.N., Theory of Elasticity, McGraw-Hill,1951.
  • [3] Sokolnikoff I.S., Mathematical Theory of Elasticity, McGraw-Hill, 1956.
  • [4] Lekhnitskii S.G., Theory of Elasticity of an Anisotropic Body,Mir Publishers, 1981.
  • [5] Kaw A.K., Mechanics of CompositeMaterials, CRC Press, 1997.
  • [6] Mase G.T., Mase G.E., Continuum Mechanics for Engineers,CRC Press, 1999.
  • [7] Jones R.M., Mechanics of Composite Materials, Taylor & Francis,1999.
  • [8] Reddy J.N., Energy Principles and Variational Methods in AppliedMechanics, John Wiley & Sons, 2002.
  • [9] Wempner G., Talaslidis D., Mechanics of Solids and Shells, CRCPress, 2003.
  • [10] Leissa A.W., Qatu M.S., Vibrations of Continuous Systems,McGraw-Hill, 2011.
  • [11] Bellman R., Casti J., Differential quadrature and long-term integration,J. Math. Anal. Appl., 1971, 34, 235-238.[Crossref]
  • [12] Bellman R., Kashef B.G., Casti J., Differential quadrature: Atechnique for the rapid solution of nonlinear partial differentialequations, J. Comput. Phys., 1972, 10, 40-52.[Crossref]
  • [13] Finlayson B.A., Scriven L.E., The method of weighted residual:a review, Appl. Mech. Rev., 1966, 19, 735-748.
  • [14] Gottlieb D., Orszag S.A., Numerical analysis of spectral methods.Theory and applications, CBMS-NSF Regional Conf. Ser.In Appl. Math., SIAM, 1977.
  • [15] Boyd J.P., Chebyshev and Fourier spectral methods, Dover Publications,2001.
  • [16] Quan J.R., A unified approach for solving nonlinear partial differentialequations in chemical engineering applications,Masterthesis, University of Nebraska-Lincoln.
  • [17] Quan J.R., Chang C.T., New insights in solving distributed systemequations by the quadrature method – I. Analysis, Comput.Chem. Eng., 1989, 13, 779-788.[Crossref]
  • [18] Quan J.R., Chang C.T., New insights in solving distributed systemequations by the quadrature method – II. Numerical experiments,Comput. Chem. Eng., 1989, 13, 1017-1024.[Crossref]
  • [19] Bert C.W., Malik M., Differential quadrature method in computationalmechanics, Appl. Mech. Rev., 1996, 49, 1-27.[Crossref]
  • [20] Shu C., Generalized differential-integral quadrature and applicationto the simulation of incompressible viscous flows includingparallel computation, PhD Thesis, University of Glasgow,UK, 1991.
  • [21] Shu C., Richards B.E., Parallel simulation of incompressibleviscous flows by generalized differential quadrature, Comput.Syst. Eng., 1992, 3, 271-281.[Crossref]
  • [22] Shu C., Richards B.E., Application of generalized differentialquadrature to solve two-dimensional incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 1992, 15, 791-798.[Crossref]
  • [23] Bert C.W., Jang S.K., Striz A.G., Two new approximate methodsfor analyzing free vibration of structural components, AIAA J.,1988, 26, 612-618.[Crossref]
  • [24] Bert C.W., Jang S.K., Striz, A.G., Nonlinear bending analysisof orthotropic rectangular plates by the method of differentialquadrature, Comput. Mech., 1989, 5, 217-226.[Crossref]
  • [25] Bert C.W., Malik M., Free vibration analysis of thin cylindricalshells by the differential quadrature method, J. Press. Vess.Technol., 1996, 118, 1-12.[Crossref]
  • [26] Bert C.W.,Wang X., Striz A.G., Differential quadrature for staticand free vibration analyses of anisotropic plates, Int. J. SolidsStruct., 1993, 30, 1737- 1744.[Crossref]
  • [27] Bert C.W., Wang X., Striz A.G., Static and free vibrational analysisof beams and plates by differential quadrature method,Acta Mech., 1994, 102, 11-24.[Crossref]
  • [28] Bert C.W., Wang X., Striz A.G., Convergence of DQ method inthe analysis of anisotropic plates, J. Sound Vib., 1994, 170,140-144.[Crossref]
  • [29] Jang S.K., Application of Differential Quadrature to the Analysisof Structural Components, PhD Thesis, University of Oklahoma,1987.
  • [30] Jang S.K., Bert C.W., Striz A.G., Application of differentialquadrature to static analysis of structural components, Int. J.Numer. Meth. Engng., 1989, 28, 561-577.[Crossref]
  • [31] Kang K., Bert C.W., Striz A.G., Vibration analysis of sheardeformable circular arches by the differential quadraturemethod, J. Sound Vib., 1995, 181, 353-360.
  • [32] Kang K.J., Bert C.W. Striz, A.G., Vibration and buckling analysisof circular arches using DQM, Comput. Struct., 1996, 60, 49-57.[Crossref]
  • [33] Shu C., Free vibration analysis of composite laminated conicalshells by generalized differential quadrature, J. Sound Vib.,1996, 194, 587-604.
  • [34] Shu C., An eflcient approach for free vibration analysis of conicalshells, Int. J. Mech. Sci., 1996, 38, 935-949.[Crossref]
  • [35] Shu C., Du H., Implementation of clamped and simply supportedboundary conditions in the GDQ free vibration analysisof beams and plates, Int. J. Solids Struct., 1997, 34, 819-835.[Crossref]
  • [36] Shu C.,Wang C.M., Treatment of mixed and nonuniform boundaryconditions in GDQ vibration analysis of rectangular plates,Eng. Struct., 1999, 21, 125-134.[Crossref]
  • [37] Ng T.Y., Li H., Lam K.Y., Loy C.T., Parametric instability of conicalshells by the generalized differential quadrature method, Int.J. Numer. Meth. Engng., 1999, 44, 819-837.[Crossref]
  • [38] Ng T.Y., Lam K.Y., Free vibration analysis of rotating circularcylindrical shells on elastic foundation, J. Vib. Acoust., 2000,122, 85-89.
  • [39] Lam K.Y., Hua L., Influence of initial pressure on frequencycharacteristics of a rotating truncated circular conical shell,Int. J. Mech. Sci., 2000, 42, 213-236.[Crossref]
  • [40] Shu C., Differential Quadrature and Its Application in Engineering,Springer, 2000.
  • [41] Lam K.Y., Li H., Ng T.Y., Chua C.F., Generalized differentialquadrature method for the free vibration of truncated conicalpanels, J. Sound Vib., 2002, 251, 329-348.
  • [42] Ng T.Y., Li H., Lam K.Y., Generalized differential quadraturemethod for the free vibration of rotating composite laminatedconical shell with various boundary conditions, Int. J. Mech.Sci., 2003, 45, 567-587.[Crossref]
  • [43] Ng C.H.W., Zhao Y.B., Wei G.W., Comparison of discrete convolutionand generalized differential quadrature for the vibrationanalysis of rectangular plates, Comput. Meth. Appl. Mech. Engng.,2004, 193, 2483-2506.
  • [44] Civalek Ö., Application of differential quadrature (DQ) and harmonicdifferential quadrature (HDQ) for buckling analysis ofthin isotropic plates and elastic columns, Eng. Struct., 2004,26, 171-186.[Crossref]
  • [45] Civalek Ö., Geometrically nonlinear analysis of doubly curvedisotropic shells resting on elastic foundation by a combinationof harmonic differential quadrature-finite difference methods,Int. J. Pres. Ves. Pip., 2005, 82, 470-479.[Crossref]
  • [46] Viola E., Tornabene F., Vibration analysis of damaged circulararches with varying cross-section, Struct. Integr. Durab. (SIDSDHM),2005, 1, 155-169.
  • [47] Viola E., Tornabene F., Vibration analysis of conical shell structuresusing GDQ method, Far East J. Appl. Math., 2006, 25, 23-39.
  • [48] Tornabene F., Modellazione e Soluzione di Strutture a Guscio inMateriale Anisotropo, PhD Thesis, University of Bologna, Italy,2007.
  • [49] Tornabene F., Viola E., Vibration analysis of spherical structuralelements using the GDQ method, Comput. Math. Appl., 2007,53, 1538-1560.[Crossref]
  • [50] Viola E., Dilena M., Tornabene F., Analytical and numericalresults for vibration analysis of multi-stepped and multidamagedcircular arches, J. Sound Vib., 2007, 299, 143-163.
  • [51] Marzani A., Tornabene F., Viola E., Nonconservative stabilityproblems via generalized differential quadrature method, J.Sound Vib. 315, 2008, 176-196.[Crossref]
  • [52] Tornabene F., Viola E., 2-D solution for free vibrations ofparabolic shells using generalized differential quadraturemethod, Eur. J. Mech. A-Solid, 2008, 27, 1001-1025.[Crossref]
  • [53] Tornabene F., Free vibration analysis of functionally gradedconical, cylindrical and annular shell structures with a fourparameterpower-law distribution, Comput. Methods Appl.Mech. Engrg., 2009, 198, 2911-2935.
  • [54] Tornabene F., Viola E., Free vibrations of four-parameter functionallygraded parabolic panels and shell of revolution, Eur. J.Mech. A-Solid, 2009, 28, 991-1013.[Crossref]
  • [55] Tornabene F., Viola E., Free vibration analysis of functionallygraded panels and shells of revolution, Meccanica, 2009, 44,255-281.[Crossref]
  • [56] Hong C.C., Thermal bending analysis of shear-deformable laminatedanisotropic plates by the GDQ method, Mech. Res. Commun.,2009, 36, 804-810.[Crossref]
  • [57] Tornabene F., Viola E., Inman D.J., 2-D differential quadraturesolution for vibration analysis of functionally graded conical,cylindrical and annular shell structures, J. Sound Vib., 2009,328, 259-290.
  • [58] Viola E., Tornabene F., Free vibrations of three parameter functionallygraded parabolic panels of revolution, Mech. Res.Commun., 2009, 36, 587-594.[Crossref]
  • [59] Sadeghian H., Rezazadeh G., Comparison of generalized differentialquadrature and Galerkin methods for the analysis ofmicro-electro-mechanical coupled systems, Communicationsin Nonlinear Science and Numerical Simulation, 2009, 14,2807-2816.
  • [60] Tornabene F., Marzani A., Viola E., Elishakoff I., Critical flowspeeds of pipes conveying fluid by the generalized differentialquadrature method, Adv. Theor. Appl. Mech., 2010, 3, 121-138.
  • [61] Tornabene F., 2-D GDQ solution for free vibrations ofanisotropic doubly-curved shells and panels of revolution,Compos. Struct., 2011, 93, 1854-1876.
  • [62] Tornabene F., Free vibrations of anisotropic doubly-curvedshells and panels of revolution with a free-form meridianresting on Winkler-Pasternak elastic foundations, Compos.Struct., 2011, 94, 186-206.[Crossref]
  • [63] Tornabene F., Liverani A., Caligiana G., FGM and laminateddoubly-curved shells and panels of revolution with a free-formmeridian: a 2-D GDQ solution for free vibrations, Int. J. Mech.Sci., 2011, 53, 446-470.[Crossref]
  • [64] Viola E., Rossetti L., Fantuzzi N., Numerical investigation offunctionally graded cylindrical shells and panels using thegeneralized unconstrained third order theory coupled with thestress recovery, Compos. Struct., 2012, 94, 3736-3758.[Crossref]
  • [65] Tornabene F., Liverani A., Caligiana G., Laminated compositerectangular and annular plates: a GDQ solution for static analysiswith a posteriori shear and normal stress recovery, Compos.Part B-Eng., 2012, 43, 1847-1872.[Crossref]
  • [66] Tornabene F., Liverani A., Caligiana G., Static analysis of laminatedcomposite curved shells and panels of revolution with aposteriori shear and normal stress recovery using generalizeddifferential quadrature method, Int. J. Mech. Sci., 2012, 61, 71-87.[Crossref]
  • [67] Tornabene F., Liverani A., Caligiana G., General anisotropicdoubly-curved shell theory: a differential quadrature solutionfor free vibrations of shells and panels of revolutionwith a freeformmeridian, J. Sound Vib., 2012, 331, 4848-4869.
  • [68] Ferreira A.J.M., Viola E., Tornabene F., Fantuzzi N., ZenkourA.M., Analysis of sandwich plates by generalized differentialquadrature method, Math. Probl. Eng., 2013, 2013, 1-22, ArticleID 964367.[Crossref]
  • [69] Tornabene F., Ceruti A., Free-form laminated doubly-curvedshells and panels of revolution resting on Winkler-Pasternakelastic foundations: a 2-D GDQ solution for static and free vibrationanalysis, World J. Mech., 2013, 3, 1-25.
  • [70] Tornabene F., Reddy J.N., FGM and laminated doubly-curvedand degenerate shells resting on nonlinear elastic foundations:a GDQ solution for static analysiswith a posteriori stressand strain recovery, J. Indian Inst. Sci., 2013, 93, 635-688.
  • [71] Tornabene F., Viola E., Static analysis of functionally gradeddoubly-curved shells and panels of revolution, Meccanica,2013, 48, 901-930.[Crossref]
  • [72] Tornabene F., Viola E., Fantuzzi N., General higher-order equivalentsingle layer theory for free vibrations of doubly-curvedlaminated composite shells and panels, Compos. Struct.,2013, 104, 94-117.[Crossref]
  • [73] Viola E., Tornabene F., Fantuzzi N., General higher-order sheardeformation theories for the free vibration analysis of completelydoubly-curved laminated shells and panels, Compos.Struct., 2013, 95, 639-666.[Crossref]
  • [74] Viola E., Tornabene F., Fantuzzi N., Static analysis of completelydoubly-curved laminated shells and panels usinggeneral higher-order shear deformation theories, Compos.Struct., 2013, 101, 59-93.[Crossref]
  • [75] Tornabene F., Fantuzzi N., Mechanics of Laminated CompositeDoubly-Curved Shell Structures. The Generalized DifferentialQuadrature Method and the Strong Formulation Finite ElementMethod, Esculapio, 2014.
  • [76] Ferreira A.J.M., Carrera E., Cinefra M., Viola E., TornabeneF., Fantuzzi N., Zenkour A.M., Analysis of thick isotropic andcross-ply laminated plates by generalized differential quadraturemethod and a unified formulation, Compos. Part B-Eng.,2014, 58, 544-552.[Crossref]
  • [77] Tornabene F., Fantuzzi N., Viola E., Carrera E., Static analysisof doubly-curved anisotropic shells and panels using CUFapproach, differential geometry and differential quadraturemethod, Compos. Struct., 2014, 107, 675-697.[Crossref]
  • [78] Tornabene F., Fantuzzi N., Viola E., Reddy J.N., Winkler-Pasternak foundation effect on the static and dynamic analysesof laminated doubly-curved and degenerate shells andpanels, Compos. Part B-Eng., 2014, 57, 269-296.[Crossref]
  • [79] Tornabene F., Ceruti, A., Mixed static and dynamic optimizationof four-parameter functionally graded completely doublycurvedand degenerate shells and panels using GDQ method,Math. Probl. Eng., 2013, 2013, 1-33, Article ID 867079.[Crossref]
  • [80] Viola E., Rossetti L., Fantuzzi N., Tornabene F., Static analysisof functionally graded conical shells and panels using thegeneralized unconstrained third order theory coupled with thestress recovery, Compos. Struct., 2014, 112, 44-65.[Crossref]
  • [81] Tornabene F., Fantuzzi N., Bacciocchi M., The local GDQmethod applied to general higher-order theories of doublycurvedlaminated composite shells and panels: the free vibrationanalysis, Compos. Struct., 2014, 116, 637-660.[Crossref]
  • [82] Tornabene F., Fantuzzi N., Bacciocchi M., Free vibrations offree-form doubly-curved shells made of functionally gradedmaterials using higher-order equivalent single layer theories,Compos. Part B Eng., 2014, 67, 490-509.[Crossref]
  • [83] Viola E., Tornabene F., Fantuzzi N., Stress and strain recoveryof laminated composite doubly-curved shells and panels usinghigher-order formulations, Key Eng. Mat., 2015, 624, 205-213.
  • [84] Tornabene F., Fantuzzi N., Viola E., Batra R.C., Stress and strainrecovery for functionally graded free-form and doubly-curvedsandwich shells using higher-order equivalent single layertheory, Compos. Struct., 2015, 119, 67-89.[Crossref]
  • [85] Liu G.R., Mesh Free Methods. Moving Beyond the Finite ElementMethod, CRC Press, 2003.
  • [86] Li H.,Mulay S.S., Meshless Methods and their Numerical Properties,CRC Press, 2013.
  • [87] Liew K.M., Huang Y.Q., Reddy J.N., Analysis of general shapedthin plates by the moving least-squares differential quadraturemethod, Finite Elem. Anal. Design, 2004, 40, 1453-1474.[Crossref]
  • [88] Li Q.S., Huang Y.Q., Moving least-squares differential quadraturemethod for free vibration of antisymmetric laminates, J.Eng. Mech., 2004, 130, 1447-1457.[Crossref]
  • [89] Huang Y.Q., Li Q.S., Bending and buckling analysis of antisymmetriclaminates using the moving least square differentialquadrature method, Comput. Meth. Appl. Mech. Engng., 2004,193, 3471-3492.
  • [90] Lanhe W., Hua L., Daobin W., Vibration analysis of generallylaminated composite plates by the moving least squares differentialquadrature method, Compos. Struct., 2005, 68, 319-330.[Crossref]
  • [91] Sator L., Sladek V., Sladek J., Coupling effects in elastic analysisof FGM composite plates by mesh-free methods", Compos.Struct., 2014, 115, 100-110.
  • [92] Sator L., Sladek V., Sladek J., Analysis of Beams with TransversalGradations of the Young’s Modulus and Variable Depths bythe Meshless Method, Slovak J. Civil Eng., 2014, 22, 23-36.
  • [93] Belytschko T., Lu Y.Y., Gu L., Element-free Galerkin methods,Int. J. Numer. Meth. Engng., 1994, 37, 229-256.[Crossref]
  • [94] Belytschko T., Lu Y.Y., Gu L., Tabbara M., Element-free Galerkinmethods for static and dynamic fracture, Int. J. Solids Struct.,1995, 32, 2547- 2570.[Crossref]
  • [95] Belytschko T., Krongauz Organ D., Fleming M., Krysl P., Meshlessmethods: an overview and recent developments, Comput.Meth. Appl. Engng., 1996, 139, 3-47.[Crossref]
  • [96] Krysl P., Belytschko T., Element-free Galerkin method: convergence,Comput. Meth. Appl. Mech. Engng., 1997, 148, 257-277.[Crossref]
  • [97] Atluri S.N., Zhu T., A new Meshless Local Petrov-Galerkin(MLPG) approach to nonlinear problems in computer modeling& simulation, Comput. Model. Simul. Eng., 1998, 3, 187-196.
  • [98] Atluri S.N., Zhu T., A new Meshless Local Petrov-Galerkin(MLPG) approach in computational mechanics, Comput.Mech., 1998, 22, 117-127.[Crossref]
  • [99] Atluri S.N., Zhu T., New concepts in meshless methods, Int. J.Numer. Meth. Engng., 2000, 47, 537-556.[Crossref]
  • [100] Atluri S.N., Zhu T.L., The meshless local Petrov-Galerkin (MLPG)approach for solving problems in elasto-statics, Comput.Mech., 2000, 25, 169-179.[Crossref]
  • [101] Kansa E.J., Multiquadrics - A scattered data approximationscheme with applications to computational fluid-dynamics - Isurface approximations and partial derivative estimates, Comput.Math. Appl., 1990, 19, 127-145.[Crossref]
  • [102] Kansa E.J., Multiquadrics - A scattered data approximationscheme with applications to computational fluid-dynamics - IIsolutions to parabolic, hyperbolic and elliptic partial differentialequations, Comput. Math. Appl., 1990, 19, 147-161.[Crossref]
  • [103] Fasshauer G.E., Solving differential equationswith radial basisfunctions: multilevel methods and smoothing”, Adv. Comput.Math., 1999, 11, 139-159.[Crossref]
  • [104] Ferreira A.J.M., Fasshauer G.E., Computation of natural frequenciesof shear deformable beams and plates by an RBFpseudospectralmethod, Comput. Meth. Appl. Mech. Engng.,2006, 196, 134-146.
  • [105] Ferreira A.J.M., Fasshauer G.E., Batra R.C., Rodrigues J.D.,Static deformations and vibration analysis of composite andsandwich plates using a layerwise theory and RBF-PS discretizationswith optimal shape parameter, Compos. Struct., 2008, 86, 328-343.[Crossref]
  • [106] Wendland H., Meshless Galerkin methods using radial basisfunctions, Math. Comput., 1999, 68, 1521- 1531.[Crossref]
  • [107] Buhmann M.D., Radial basis functions, Acta Numer., 2000, 9,1-38.
  • [108] Shu C., Ding H., Yeo K.S., Solution of partial differential equationsby a global radial basis function- based differentialquadrature method, Eng. Anal. Bound. Elem., 2004, 28, 1217-1226.[Crossref]
  • [109] Tornabene F., Fantuzzi N., Viola E., Ferreira A.J.M., Radial BasisFunction method applied to doubly-curved laminated compositeshells and panels with a general higher-order equivalentsingle Layer theory, Compos. Part B-Eng., 2013, 55, 642-659.[Crossref]
  • [110] Civan F., Sliepcevich C.M., Application of differential quadraturein solution of pool boiling in cavities, Proc. OklahomaAcad. Sci., 1985, 65, 73-78.
  • [111] Chen W.L., A New Approach for Structural Analysis. TheQuadrature Element Method, PhD Thesis, University of Oklahoma,1994.
  • [112] ChenW.L., Striz A.G., Bert C.W., High accuracy plane stress andplate element in the quadrature element method, Int. J. SolidsStruct., 2000, 37, 627- 647.
  • [113] Zhong H., He Y., Solution of Poisson and Laplace equations byquadrilateral quadrature element. Int. J. Solids Struct., 1998,35, 2805-2819.[Crossref]
  • [114] Shu C., Chew Y.T., Khoo B.C., Yeo K.S., Application of GDQscheme to simulate incompressible viscous flows around complexgeometries, Mech. Res. Commun., 1995, 22, 319-325.[Crossref]
  • [115] Shu C., Chew Y.T., Liu Y., An eflcient approach for numericalsimulation of flows in Czochralski crystal growth, J. Cryst.Growth, 1997, 181, 427- 436.
  • [116] Lam S.S.E., Application of the differential quadrature methodto two-dimensional problems with arbitrary geometry. Comput.Struct., 1993, 47, 459-464.[Crossref]
  • [117] Bert C.W., Malik M., The differential quadrature method forirregular domains and application to plate vibration, Int. J.Mech. Sci., 1996, 38, 589-606.[Crossref]
  • [118] Chen C.-N., A generalized differential quadrature elementmethod. Comput. Meth. Appl. Mech. Engrg, 2000, 188, 553-566.[Crossref]
  • [119] Chen C.-N., DQEM and DQFDM for the analysis of compositetwo-dimensional elasticity problems, Compos. Struct., 2013,59, 3-13.
  • [120] Zhang Y.Y., Development of Differential Quadrature Methodsand Their Applications to Plane Elasticity, PhD Thesis, NationalUniversity of Singapore, 2003.
  • [121] Zong Z., Lam K., Zhang Y., A multidomain differential quadratureapproach to plane elastic problems with material discontinuity,Math. Comput. Model., 2005, 41, 539-553.[Crossref]
  • [122] Zong Z., Zhang Y.Y., Advanced Differential Quadrature Methods,CRC Press, 2009.
  • [123] Xing Y., Liu B., High-accuracy differential quadrature finite elementmethod and its application to free vibrations of thin platewith curvilinear domain, Int. J. Numer. Meth. Eng., 2009, 80,1718-1742.[Crossref]
  • [124] Xing Y., Liu B., Liu G., A differential quadrature finite elementmethod, Int. J. Appl. Mech., 2010, 2, 207-227.[Crossref]
  • [125] Zhong H., Yu T., A weak form quadrature element method forplane elasticity problems, Appl.Math. Model., 2009, 33, 3801-3814.[Crossref]
  • [126] Fantuzzi N., Generalized differential quadrature finite elementmethod applied to advanced structural mechanics, PhD Thesis,University of Bologna, 2013.
  • [127] Viola E., Tornabene F., Fantuzzi N., Generalized differentialquadrature finite element method for cracked composite structuresof arbitrary shape, Compos. Struct., 2013, 106, 815-834.[Crossref]
  • [128] Viola E., Tornabene F., Ferretti E., Fantuzzi N., Soft core planestate structures under static loads using GDQFEM and Cellmethod, CMES, 2013, 94, 301-329.
  • [129] Viola E., Tornabene F., Ferretti E., Fantuzzi N., GDQFEM numericalsimulations of continuous media with cracks and discontinuities,CMES, 2013, 94, 331-368.
  • [130] Viola E., Tornabene F., Ferretti E., Fantuzzi N., On static analysisof plane state structures via GDQFEM and Cell method, CMES,2013, 94, 421-458.
  • [131] Fantuzzi N., Tornabene F., Strong formulation finite elementmethod for arbitrarily shaped laminated plates - I. Theoreticalanalysis, Adv. Aircraft Space. Sci., 2014, 1, 124-142.
  • [132] Fantuzzi N., Tornabene F., Strong formulation finite elementmethod for arbitrarily shaped laminated plates - II. Numericalanalysis, Adv. Aircraft Space. Sci., 2014, 1, 143-173.
  • [133] Fantuzzi N., Tornabene F., Viola E., Generalized differentialquadrature finite element method for vibration analysis of arbitrarilyshaped membranes, Int. J. Mech. Sci., 2014, 79, 216-251.[Crossref]
  • [134] Fantuzzi N., Tornabene F., Viola E., Ferreira A.J.M., A Strong FormulationFinite Element Method (SFEM) based on RBF and GDQtechniques for the static and dynamic analyses of laminatedplates of arbitrary shape, Meccanica, 2014, 49, 2503-2542.[Crossref]
  • [135] Fantuzzi N., Tornabene F., Viola E., Four-parameter functionallygraded cracked plates of arbitrary shape: a GDQFEM solutionfor free vibrations, Mech. Adv. Mat. Struct., 2014, (in press),DOI:[Crossref]
  • [136] Tornabene F., Fantuzzi N., Bacciocchi M., The strong formulationfinite element method: stability and accuracy, Fract.Struct. Integr., 2014, 29, 251-265.
  • [137] Tornabene F., Fantuzzi N., Ubertini F., Viola E., Strongformulation finite element method based on differentialquadrature: a survey, Appl. Mech. Rev., 2014, (in press),DOI:10.1115/1.4028859[Crossref]
  • [138] Zhong H., He Y., A note on incorporation of domain decompositioninto the differential quadrature method, Commun. Numer.Methods Engrg., 2003, 19, 297-306.[Crossref]
  • [139] Bardell N.S., Langley R.S., Dunsdon J.M., On the free in-planevibration of isotropic rectangular plates, J. Sound Vib., 1996,191, 459-467.
  • [140] Hyde K., Chang J.Y., Bacca C., Wickert J.A., Parameter studiesfor plane stress in-plane vibration of rectangular plates, J.Sound Vib., 2001, 247, 471-487.
  • [141] Singh A.V., Muhammad T., Free in-plane vibration of isotropicnon-rectangular plates, J. Sound Vib., 2004, 273, 219-231.
  • [142] Park C.I., Frequency equation for the in-plane vibration of aclamped circular plate, J. Sound Vib., 2008, 313, 325-333.
  • [143] Bashmal S., Bhat R., Rakheja S., In-plane free vibration of circularannular disks, J. Sound Vib., 2009, 322, 216-226.
  • [144] R.H. Macneal, R.L. Harder, A proposed standard set of problemsto test finite element accuracy. Finite Elem. Anal Design,1985, 1, 3-20.
  • [145] Rezaiee-Pajand, M. Karkon, An effective membrane elementbased on analytical solution, Eur. J. Mech. A/Solids, 2013, 39, 268-279.[Crossref]
  • [146] M.C. Amirani, S. Khalili, N. Nemati, Free vibration analysis ofsandwich beam with FG core using the element free Galerkinmethod, Compos. Struct.,2009, 90, 373-379.[Crossref]
  • [147] R. Cook, Concepts and applications of finite element analysis.Wiley, 2001.
  • [148] R. Cook, J. Avrashi, Error estimation and adaptive meshing forvibration problems, Comput. Struct., 1992, 44, 619-626.[Crossref]
  • [149] K.K. Gupta, Development of a finite dynamic element for freevibration analysis of two-dimensional structures. Int. J. Numer.Methods Engrg., 1978, 12, 1311-1327.[Crossref]
  • [150] Y. Li, N. Fantuzzi, F. Tornabene, On mixed mode crack initiationand direction in shafts: strain energy density factor and maximumtangential stress criteria, Eng. Fract. Mech., 2013, 109,273-289.[Crossref]
  • [151] Y. Li, E. Viola, Size effect investigation of a central interfacecrack between two bonded dissimilar materials. Compos.Struct., 2013, 105, 90-107.[Crossref]
  • [152] E. Viola, N. Fantuzzi, A. Marzani, A. (2012): Cracks interactioneffect on the dynamic stability of beams under conservativeand nonconservative forces. Key Eng. Mat., 2012, 488-489,383-386.
  • [153] E. Viola, Y. Li, N. Fantuzzi, N. (2012): On the stress intensity factorsof cracked beams for structural analysis. Key Eng. Mat.,2012, 488-489, 379-382.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.