Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |

Tytuł artykułu

Exact 3D solutions and finite element 2D models for free vibration analysis of plates and cylinders

Treść / Zawartość

Warianty tytułu

Języki publikacji



The paper proposes a comparison between classical two-dimensional (2D) finite elements (FEs) and an exact three-dimensional (3D) solution for the free vibration analysis of one-layered and multilayered isotropic, composite and sandwich plates and cylinders. Low and high order frequencies are analyzed for thick and thin simply supported structures. Vibration modes are investigated to make a comparison between results obtained via the finite element method and those obtained by means of the exact three-dimensional solution. The 3D exact solution is based on the differential equations of equilibrium written in general orthogonal curvilinear coordinates. This exact method is based on a layer-wise approach, the continuity of displacements and transverse shear/normal stresses is imposed at the interfaces between the layers of the structure. The geometry for shells is considered without any simplifications. The 2D finite element results are obtained by means of a well-known commercial FE code. The differences between 2D FE solutions and 3D exact solutions depend on the considered mode, the order of frequency, the thickness ratio of the structure, the geometry, the embedded material and the lamination sequence.







Opis fizyczny




  • Salvatore
    Brischetto, Department of Mechanical and Aerospace Engineering,
    Politecnico di Torino, corso Duca degli Abruzzi, 24, 10129 Torino,
  • Postgraduate at Politecnico di Torino


  • [1] A.W. Leissa, Vibration of Plates, NASA SP-160, Washington, 1969.
  • [2] A.W. Leissa, Vibration of Shells, NASA SP-288, Washington, 1973.
  • [3] S. Werner, Vibrations of Shells and Plates, 3rd edition: revised and expanded, CRC Press, New York: Marcel Dekker Inc., 2004.
  • [4] S. Brischetto and E. Carrera, Importance of higher order modes and refined theories in free vibration analysis of composite plates, Journal of Applied Mechanics, 77, 1-14, 2010. [WoS]
  • [5] S. Brischetto, Exact elasticity solution for natural frequencies of functionally graded simply-supported structures, CMES: Computer Modeling in Engineering & Sciences, 95, 391-430, 2013.
  • [6] S. Brischetto, A continuum elastic three-dimensional model for natural frequencies of single-walled carbon nanotubes, Composites Part B: Engineering, 61, 222-228, 2014. [WoS]
  • [7] S. Brischetto, Three-dimensional exact free vibration analysis of spherical, cylindrical, and flat one-layered panels, Shock and Vibration, 2014, 1-29, 2014. [WoS]
  • [8] MSC Nastran, Products ( product/msc-nastran, accessed on 4th November 2014).
  • [9] S. Aimmanee and R.C. Batra, Analytical solution for vibration of an incompressible isotropic linear elastic rectangular plate, and frequencies missed in previous solutions, Journal of Sound and Vibration, 302, 613-620, 2007. [WoS]
  • [10] R.C. Batra and S. Aimmanee, Letter to the Editor: Missing frequencies in previous exact solutions of free vibrations of simply supported rectangular plates, Journal of Sound and Vibration, 265, 887-896, 2003.
  • [11] S. Srinivas, C.V. Joga Rao and A.K. Rao, An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates, Journal of Sound and Vibration, 12, 187-199, 1970. [Crossref]
  • [12] S. Srinivas, A.K. Rao and C.V.J. Rao, Flexure of simply supported thick homogeneous and laminated rectangular plates, Zeitschrift für Angewandte Mathematik und Mechanik, 49, 449- 458, 1969.
  • [13] R.C. Batra, S. Vidoli and F. Vestroni, Plane wave solutions and modal analysis in higher order shear and normal deformable plate theories, Journal of Sound and Vibration, 257, 63-88, 2002.
  • [14] J.Q. Ye, A three-dimensional free vibration analysis of cross-ply laminated rectangular plates with clamped edges, Computer Methods in Applied Mechanics and Engineering, 140, 383-392, 1997.
  • [15] A. Messina, Three dimensional free vibration analysis of crossply laminated plates through 2D and exact models, 3rd International Conference on Integrity, Reliability and Failure, Porto (Portugal), 20-24 July 2009.
  • [16] Y.K. Cheung and D. Zhou, Three-dimensional vibration analysis of cantilevered and completely free isosceles triangular plates, International Journal of Solids and Structures, 39, 673- 687, 2002.
  • [17] K.M. Liew and B. Yang, Three-dimensional elasticity solutions for free vibrations of circular plates: a polynomials-Ritz analysis, Computer Methods in Applied Mechanics and Engineering, 175, 189-201, 1999.
  • [18] Y.B. Zhao, G.W. Wei and Y. Xiang, Discrete singular convolution for the prediction of high frequency vibration of plates, International Journal of Solids and Structures, 39, 65-88, 2002.
  • [19] G.W. Wei, Y.B. Zhao and Y. Xiang, A novel approach for the analysis of high-frequency vibrations, Journal of Sound and Vibration, 257, 207-246, 2002.
  • [20] H. Rokni Damavandi Taher, M. Omidi, A.A. Zadpoor and A.A. Nikooyan, Short Communication: Free vibration of circular and annular plates with variable thickness and different combinations of boundary conditions, Journal of Sound and Vibration, 296, 1084-1092, 2006.
  • [21] Y. Xing and B. Liu, New exact solutions for free vibrations of rectangular thin plates by symplectic dual method, Acta Mechanica Sinica, 25, 265-270, 2009. [WoS]
  • [22] S.S. Vel and R.C. Batra, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, Journal of Sound and Vibration, 272, 703-730, 2004.
  • [23] W.-Q. Chen, H.-J. Ding and R.-Q. Xu, On exact analysis of free vibrations of embedded transversely isotropic cylindrical shells, International Journal of Pressure Vessels and Piping, 75, 961- 966, 1998.
  • [24] B. Gasemzadeh, R. Azarafza, Y. Sahebi and A. Motallebi, Analysis of free vibration of cylindrical shells on the basis of three dimensional exact elasticity theory, Indian Journal of Science and Technology, 5, 3260-3262, 2012.
  • [25] N.N. Huang, Exact analysis for three-dimensional free vibrations of cross-ply cylindrical and doubly-curved laminates, Acta Mechanica, 108, 23-34, 1995.
  • [26] J.N. Sharma, D.K. Sharma and S.S. Dhaliwal, Three-dimensional free vibration analysis of a viscothermoelastic hollow sphere, Open Journal of Acoustics, 2, 12-24, 2012.
  • [27] J.N. Sharma and N. Sharma, Three-dimensional free vibration analysis of a homogeneous transradially isotropic thermoelastic sphere, Journal of Applied Mechanics, 77, 1-9, 2010. [WoS]
  • [28] K.P. Soldatos and J. Ye, Axisymmetric static and dynamic analysis of laminated hollow cylinders composed of monoclinic elastic layers, Journal of Sound and Vibration, 184, 245-259, 1995.
  • [29] A.E. Armenakas, D.C. Gazis and G. Herrmann, Free Vibrations of Circular Cylindrical Shells, Pergamon Press, Oxford, 1969.
  • [30] A. Bhimaraddi, A higher order theory for free vibration analysis of circular cylindrical shells, International Journal of Solids and Structures, 20, 623-630, 1984.
  • [31] H. Zhou, W. Li, B. Lv and W.L. Li, Free vibrations of cylindrical shellswith elastic-support boundary conditions, Applied Acoustics, 73, 751-756, 2012. [WoS]
  • [32] S.M.R. Khalili, A. Davar and K.M. Fard, Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory, International Journal of Mechanical Sciences, 56, 1-25, 2012. [WoS]
  • [33] S.S. Vel, Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells, Composite Structures, 92, 2712-2727, 2010. [WoS]
  • [34] C.T. Loy and K.Y. Lam, Vibration of thick cylindrical shells on the basis of three-dimensional theory of elasticity, Journal of Sound and Vibration, 226, 719-737, 1999.
  • [35] Y.Wang, R. Xu, H. Ding and J. Chen, Three-dimensional exact solutions for free vibrations of simply supportedmagneto-electroelastic cylindrical panels, International Journal of Engineering Science, 48, 1778-1796, 2010. [WoS]
  • [36] E. Efraim and M. Eisenberger, Exact vibration frequencies of segmented axisymmetric shells, Thin-Walled Structures, 44, 281-289, 2006.
  • [37] J.-H. Kanga and A.W. Leissa, Three-dimensional vibrations of thick spherical shell segments with variable thickness, International Journal of Solids and Structures, 37, 4811-4823, 2000.
  • [38] K.M. Liew, L.X. Peng and T.Y. Ng, Three-dimensional vibration analysis of spherical shell panels subjected to different boundary conditions, International Journal of Mechanical Sciences, 44, 2103-2117, 2002.
  • [39] F.B. Hildebrand, E. Reissner and G.B. Thomas, Notes on the Foundations of the Theory of Small Displacements of Orthotropic Shells, NACA Technical Note No. 1833, Washington, 1949.
  • [40] F. Tornabene, Meccanica delle Strutture a Guscio in Materiale Composito, Societá Editrice Esculapio, Bologna (Italy), 2012.
  • [41] W. Soedel, Vibration of Shells and Plates, Marcel Dekker, Inc., New York, 2004.
  • [42] G.B. Gustafson, Systems of Differential Equations, free available on, accessed on 16th September 2014.
  • [43] W.E. Boyce and R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems, John Wiley & Sons, Ltd., New York, 2001.
  • [44] D. Zwillinger, Handbook of Differential Equations, Academic Press, New York, 1997.
  • [45] C. Molery and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 45, 1-46, 2003.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.