PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Analysis of Smart Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates: Part II – Applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A comprehensive micromechanical model for the analysis of a smart composite piezo-magneto-thermoelastic thin plate with rapidly varying thickness is developed in Part I of thiswork. The asymptotichomogenization model is developed using static equilibrium equations and the quasi-static approximation of Maxwell’s equations. The work culminates in the derivation of general expressions for effective elastic, piezoelectric, piezomagnetic, dielectric permittivity and other coefficients. Among these coefficients, the so-called product coefficients are determined which are present in the behavior of the macroscopic composite as a result of the interactions between the various phases but can be absent from the constitutive behavior of some individual phases of the composite structure. The model is comprehensive enough to also allow for calculation of the local fields of mechanical stresses, electric displacement and magnetic induction. The present paper determines the effective properties of constant thickness laminates comprised of monoclinic materials or orthotropic materials which are rotated with respect to their principal material coordinate system. A further example illustrates the determination of the effective properties of wafer-type magnetoelectric composite plates reinforced with smart ribs or stiffeners oriented along the tangential directions of the plate. For generality, it is assumed that the ribs and the base plate are made of different orthotropic materials. It is shown in this work that for the purely elastic case the results of the derived model converge exactly to previously established models. However, in the more general case where some or all of the phases exhibit piezoelectric and/or piezomagnetic behavior, the expressions for the derived effective coefficients are shown to be dependent on not only the elastic properties but also on the piezoelectric and piezomagnetic parameters of the constituent materials. Thus, the results presented here represent a significant refinement of previously obtained results.
Wydawca
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2014-08-07
zaakceptowano
2014-09-11
online
2014-12-10
Twórcy
  • Department of Mechanical Engineering and Materials
    Science and Engineering, Cyprus University of Technology,
    Limassol, Cyprus
  • Research Unit for Nanostructured Materials Systems, Department
    of Mechanical Engineering and Materials Science and Engineering,
    Cyprus University of Technology, Limassol, Cyprus
  • Department of Mechanical Engineering, Dalhousie
    University, PO Box 15000, Halifax, Nova Scotia, B3H 4R2,
    Canada
autor
  • Department of Mechanical Engineering and Materials
    Science and Engineering, Cyprus University of Technology,
    Limassol, Cyprus
  • Research Unit for Nanostructured Materials Systems, Department
    of Mechanical Engineering and Materials Science and Engineering,
    Cyprus University of Technology, Limassol, Cyprus
  • Department of Mechanical Engineering and Materials
    Science and Engineering, Cyprus University of Technology,
    Limassol, Cyprus
  • Research Unit for Nanostructured Materials Systems, Department
    of Mechanical Engineering and Materials Science and Engineering,
    Cyprus University of Technology, Limassol, Cyprus
Bibliografia
  • [1] Kalamkarov, A.L., Georgiades, A.V., MacDonald, D., andFitzgerald, S., 2000, Pultruded FRP reinforcements with embeddedfiber optic sensors, Canadian Journal of Civil Engineering,27(5), pp. 972-984.
  • [2] A.K. Jain and J.S. Sirkis, Continuum damage mechanics inpiezoelectric ceramics. Adaptive Structures and CompositeMaterials: Analysis and Application, Eds. E. Garcia, H. Cudneyand A. Dasgupta, 47-58, (1994).
  • [3] Newnham R E, Skinner D P, Cross L E, Connectivity andpiezoelectric-pyroelectric composites,Mat. Res. Bull. 13 (1978)525-536.[Crossref]
  • [4] Nan C-W, Bichurin M I, Dong S, Viehland D and Srinivasan GMultiferroic magnetoelectric composites: Historical perspective,status, and future directions J. Appl. Phys 031101(1) –031101 (2008) (35).[Crossref]
  • [5] Srinivasan G Magnetoelectric composites Annual Review ofMaterials Research, 40 (2010) 153-178.
  • [6] Bichurin M, Petrov V, Priya S, Bhalla A, Multiferroic magnetoelectriccomposites and their applications Advances in CondensedMatter Physics (2012) Article ID 129794.
  • [7] Bhatra D, Masud Md, De S K, Chauduri B K Large magnetoelectriceffect and low-loss high relative permittivity in 0-3CuO/PVDF composite films exhibiting unusual ferromagnetismat room temperature J. Phys. D: Appl. Phys. 45 (2012) 485002.
  • [8] Chen L, Li P, Wen Y, Zhu Y Analysis of the low-frequency magnetoelectricperformance in three-phase laminate compositeswith Fe-based nanocrystalline ribbon SmartMaterials andStructures 22 (2013) 115031
  • [9] Shen Y, Gao J, Hasanyan D, Wang Y, Li M, Li J, Viehland D Investigationof vehicle inducedmagnetic anomaly by triple-axismagnetoelectric sensors Smart Materials and Structures 21(2012) 115007.
  • [10] Ju S, Chae S H, Choi Y, Lee S, Lee HW, Ji C-H A low frequency vibrationenergy harvester usingmagnetoelectric laminate compositeSmart Materials and Structures 22 (2013) 115037.
  • [11] Ruy J, Priya S, Uchino K, Kim H-EMagnetoelectric effect in compositesofmagnetostrictive and piezoelectricmaterials Journalof Electroceramics 8 (2002) 107-119.
  • [12] Oh S R, Wong T C, Tan, CW, Yao K, Tay F E Fabrication of polymermultilayers on flexible substrates for energy harvesting SmartMaterials and Structures 23 (2014) 015013.
  • [13] Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J,FiebigMMagnetic phase control by an electric field Nature 430(2004) 541-544.
  • [14] Shen Y, McLaughlin K L, Gao J, Gray D, Shen L, Wang Y, Li M,Berry D, Li, J, Viehland D AC magnetic dipole localization bya magnetoelectric sensor Smart Materials and Structures 21(2012) 065007.
  • [15] Harshe G, Doherty J P, Newnham RE Theoretical modeling of 3-0/0-3 magnetoelectric composites International Journal of AppliedElectromagnetics in Materials, 4(2) (1993) 145-159
  • [16] Harshe G, Doherty J P, Newnham R E Theoretical modeling ofmultilayermagnetoelectric composites International Journal ofApplied Electromagnetics in Materials 4(2) (1993) 161-171 .
  • [17] Avellaneda M, Harshé G Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites J. Intel. Mat.Syst. Str. 5 (1994) 501-513.[Crossref]
  • [18] I.A. Osaretin, R.G. Rojas, Theoretical model for the magnetoelectriceffect in magnetostrictive/piezoelectric composites,Phys. Rev. B 82 (2010) 174415(1)-174415(8).[Crossref]
  • [19] I. Getman, Magnetoelectric composite materials: Theoreticalapproach to determine their properties, Ferroelectrics 162(1)(1994), 45-50.[Crossref]
  • [20] C.W. Nan,Magnetoelectric effect in composites of piezoelectricand piezomagnetic phases, Physical Review B, 50(9), (1994),6082-6088.[Crossref]
  • [21] Huang J H, Kuo W S The analysis of piezoelectric/piezomagnetic compositematerials containing ellipsoidalinclusions Journal of Applied Physics 81(3) (1997) 1378-1386.[Crossref]
  • [22] Eshelby J D The determination of the elastic field of an ellipsoidalinclusion, and related problems Proc. R. Soc. Lond. A241(1226) (1957) 376-396.
  • [23] Huang J H Analytical predictions for the magnetoelectric couplingin piezomagnetic materials reinforced by piezoelectricellipsoidal inclusions Physical Review B 58(1) (1998) 12-15.[Crossref]
  • [24] Huang J H, Liu H K, Dai W L The optimized fiber volumefraction for magnetoelectric coupling effect in piezoelectricpiezomagneticcontinuous fiber reinforced composites InternationalJournal of Engineering Science 38(11) (2000) 1207-1217.[Crossref]
  • [25] Hadjiloizi, D.A., Georgiades, A.V, Kalamkarov, A.L, Jothi, S, MicromechanicalModel of Piezo-Magneto-Thermo-Elastic CompositeStructures: Part I-Theory, European Journal of MechanicsA-Solids, 39, (2013), 298-312.
  • [26] Hadjiloizi, D.A., Georgiades, A.V, Kalamkarov, A.L, Jothi, S, MicromechanicalModel of Piezo-Magneto-Thermo-Elastic CompositeStructures: Part II-Applications, European Journal of MechanicsA-Solids, 39, (2013), 313-326.
  • [27] Bravo-Castillero J, Rodrigues-Ramos R, Mechkour H, Otero J,Sabina FJ Homogenization of magneto-electro-elastic multilaminatedmaterials Q J Mechanics Appl Math 61(3) (2008) 311-332 .
  • [28] Ni Y, Priya S and Khachaturyan A G Modeling of magnetoelectriceffect in polycrystalline multiferroic laminates influencedby the orientations of applied electric/magnetic fields J ApplPhys 105 (2009) 083914(1)-083914(4).[Crossref]
  • [29] C.H. Tsang, K.H. Chau, C.K. Wong, Y.W. Wong, F.G. Shin, Modelingof the magnetoelectric effect of three-phase multiferroicparticulate composites, Integrated Ferroelectrics, 100:1,(2008), 177-197.
  • [30] D.A. Pan, S.G. Zhang, A.A. Volinsky, L.J. Qiao, Simple model ofthemagnetoelectric effect in layered cylindrical composites, J.Phys. D: Appl. Phys. 41 (2008) 205008(1)-205008(5).[Crossref]
  • [31] Bichurin M I, Petrov V N, Srinivasan G Modeling of magnetoelectriceffect in ferromagnetic/piezoelectric multilayer compositesFerroelectrics 280 (2002) 165-175.[Crossref]
  • [32] Bichurin M I, Petrov V N, Averkin S V, Liverts E Presentstatus of theoretical modeling the magnetoelectric effect inmagnetostrictive-piezoelectric nanostructures. Part I: Low frequencyelectromechanical resonance ranges J. Appl. Phys.107(5), (2010) 053904(1)-053904(11).[Crossref]
  • [33] Akbarzadeh A H, Babaei M H, Chen Z T The thermoelectromagnetoelasticbehavior of a rotating functionallygraded piezoelectric cylinder, Smart Mater. Struct. 20 (2011)065008(1)- 065008(11).[Crossref]
  • [34] Soh A K, Liu J X On the constitutive equations of magnetoelectroelasticsolids Journal of Intelligent Materials Systems andStructures 16 (2005) 597-602.
  • [35] Kirchner H O K, Alshits V I Elastically anisotropic angularly inhomogeneousmedia II. The Green’s function for piezoelectric,piezomagnetic andmagnetoelectric media PhilosophicalMagazineA 74(4) (1996) 861-885.
  • [36] Pan E, Heyliger R P Free vibrations of simply supported andmultilayered magneto-electro-elastic plates, Journal of Soundand Vibration 252(3) (2002) 429-442.
  • [37] Benveniste Y, Milton G W New exact results for the effectiveelectric, elastic, piezoelectric and other properties of compositeellipsoid assemblages Journal of the Mechanics andPhysics of Solids 51(10) (2003) 1773-1813.[Crossref]
  • [38] Spyropoulos C P, Sih G C , Song Z FMagnetoelectroelastic compositewith poling parallel to plane of line crack under out-ofplanedeformation Theoretical and Applied Fracture Mechanics40(2) (2003) 281-289.[Crossref]
  • [39] Tang T, YuWVariational Asymptotic homogenization of heterogeneouselectromagnetoelastic materials Int. J. Eng. Sci. 46(2008) 741-757.[Crossref]
  • [40] Tang T, Yu W Micromechanical modeling of the multiphysicalbehavior of smart materials using the variational asymptoticmethod Smart Mater. Struct. 18(12) (2009) 125026 (1)-125026(14).[Crossref]
  • [41] Bensoussan A, Lions J L, Papanicolaou G Asymptotic analysisfor periodic structures, Amsterdam: North-Holland, 1978.
  • [42] Sanchez-Palencia E, Non-Homogeneous media and vibrationtheory. Lecture Notes in Physics, Berlin: Springer-Verlag,1980.
  • [43] Bakhvalov N, Panasenko G Homogenisation: Averaging processesin periodic media, Amsterdam: Kluwer Academic Publishers,1984.
  • [44] Cioranescu D, Donato P, An Introduction to homogenization,Oxford: Oxford University Press, 1999.
  • [45] Kalamkarov A L, Composite and Reinforced Elements of Construction,New York: Wiley,1992.
  • [46] Kalamkarov A L, Kolpakov A G Analysis, design and optimizationof composite structures ,New York: Wiley, 1997.
  • [47] Guedes J M and Kikuchi N Preprocessing and postprocessingformaterials based on the homogenization method with adaptivefinite element methods, Comput. Methods Appl. Mech. Engrg.83 (1990) 143-198.[Crossref]
  • [48] Duvaut G Analyse fonctionnelle et méchanique des milieuxcontinus, Proceedings of the 14th IUTAM Congress (Delft, Holland)(1976) 119-132.
  • [49] Duvaut G, Metellus A-M Homogénéisation d’une plaque minceen flexion de structure périodique et symétrique C.R. Acad.Sci., Ser. A. 283 (1976) 947-950.
  • [50] Andrianov I V,Manevich L I Shell design using the homogenizationmethod Uspekhi Mekh 6 (1983) 3-29.
  • [51] Andrianov I V, Lesnichaya V , Manevich L I Homogenizationmethods in the statics and dynamics of ribbed shells (Moscow,Nauka) (1985).
  • [52] Caillerie D Equations de la diffusion stationnaire dans un domainecomportant une distribution périodique d’inclusionsaplaties de grande conductivité C.R. Acad. Sci., Ser. 1 292(1)(1981) 115-118.
  • [53] Caillerie D Homogénéisation des equation de la diffusion stationnairedans les domaines cylindrique aplatis Anal. Numér.15 (1981) 295-319.
  • [54] Kohn R V, Vogelius M A new model for thin plates with rapidlyvarying thickness, Int. J. of Solids and Struct. 20 (1984) 333-350.[Crossref]
  • [55] Kohn R V, Vogelius M A new model for thin plates with rapidlyvarying thickness, II: A convergence proof, Quart. J. Appl.Math. 43 (1985) 1-22.
  • [56] Kohn R V, Vogelius M A new model for thin plates with rapidlyvarying thickness, III: Comparison of Different Scalings, Quart.J. Appl. Math. 44 (1986) 35-48.
  • [57] Hussain F, Hojjati M, Okamoto M, Gorga R.E., Polymer-matrixnanocomposites, processing, manufacturing and application:An overview, Journal of Composite Materials 40(17) (2006),1511-1575.
  • [58] Challagulla K S, Georgiades A V, Kalamkarov A L Asymptotichomogenization modeling of smart composite generally orthotropicgrid-reinforced shells. Part I-Theory European Journalof Mechanics A-Solids 29 (2010) 530-540.[Crossref]
  • [59] Georgiades A V, Challagulla K S, Kalamkarov A L Asymptotichomogenization modeling of smart composite generally orthotropicgrid-reinforced shells. Part II-Applications EuropeanJournal of Mechanics A-Solids 29 (2010) 541-556.[Crossref]
  • [60] A.L. Kalamkarov and A.V. Georgiades, Asymptotic homogenizationmodels for smart composite plates with rapidly varyingthickness: Part I-Theory, Journal of Multiscale ComputationalEngineering 2(1) ( 2004) 133-148.
  • [61] A.V. Georgiades and A.L. Kalamkarov, Asymptotic homogenizationmodels for smart composite plates with rapidly varyingthickness: Part II-Applications, Journal of Multiscale ComputationalEngineering 2(1) (2004) 149-174.
  • [62] G.C. Saha, A.L. Kalamkarov, A.V. Georgiades, Micromechanicalanalysis of effective piezoelastic properties of smart compositesandwich shells made of generally orthotropic materials,Smart Materials and Structures 16(3) (2007) 866-883.
  • [63] HadjiloiziDA, Georgiades A V, Kalamkarov A L. Dynamic modelingand determination of effective properties of smart compositeplates with rapidly varying thickness, International Journalof Engineering Science 56 (2012) 63-85.[Crossref]
  • [64] Hadjiloizi D A, Kalamkarov A L, Georgiades A V, Quasi-staticAnalysis of Piezo-Magneto-Thermo-Elastic Composite and ReinforcedPlates: Part I – Model Development, Curved and LayeredStructures 1 (2014) 11-31.
  • [65] Sevostianov I, Kachanov M Effect of interphase layers on theoverall elastic and conductive properties of matrix composites.Applications to nanosize inclusion Int. J. Solids Struct. 44(2007) 1304-1315.[Crossref]
  • [66] Gibson R F, Principles of Composite Material Mechanics,McGraw-Hill, New York, 1994.
  • [67] Vinson, J R, Sierakowski, R L, The Behavior of Structures Composedof Composite Materials, Kluwer Academic Publishers,Dordrecht, Netherlands, 2002.
  • [68] Reddy, J N, Mechanics of laminated composite plates, CRCPress, New York, 1997.
  • [69] Li L, Dunn ML, Micromechanics of magnetoelectroelastic compositematerials: average fields and effective behaviour, J. Intel.Mat. Syst. Str. 1998; 9: 404–416.[Crossref]
  • [70] Yoshihiro O, Tanigawa Y. Transient analysis of multilayeredmagneto-electro-thermoelastic strip due to nonuniform heatsupply, Compos. Struct. 2005; 66: 471-480.
  • [71] Cook W R Jr, Berlincourt, D A, Scholz, Thermal Expansion andpyroelectricity in Lead Zirconium Titanate Zirconate and BariumTitanate, Journal of Applied Physics 34 (1963), 1392-1398.[Crossref]
  • [72] Verma KC, Gupta V, Kaur J, Kotnala, R K, Raman Spectra, photoluminescence,magnetism and magnetoelectric coupling inpure and Fe doped BaTiO3 nanostructures, Journal of Alloysand Compounds 578 (2013), 5-11.
  • [73] Dascalu G, Popescu T, Feder, M, Caltun, O F, Structural, electricand magnetic properties of CoFe1.8RE0.2O4 (RE = Dy, Gd, La)bulk materials, Journal of Magnetism and Magnetic Materials33 (2013), 69-74.
  • [74] Kalamkarov, AL (2014) Asymptotic Homogenization Methodand Micromechanical Models for Composite Materials andThin-Walled Composite Structures, in “Mathematical Methodsand Models in Composites,” pp. 1-60, Imperial College Press,London.
  • [75] Kalamkarov, AL and Challagulla KS (2013) Effective Propertiesof CompositeMaterials, Reinforced Structures andSmart Composites.Asymptotic Homogenization Approach, in “EffectiveProperties of Heterogeneous Materials,” Solid Mechanics andIts Applications, Vol. 193, pp. 283-363. Springer, Dordrecht,New York.
  • [76] Challagulla, KS, Georgiades AV. Micromechanical Analysis ofMagneto-Electro-Thermo-Elastic CompositeMaterials with Applicationsto Multilayered Structures. International Journal ofEngineering Science 49 (2011) 85-104.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_cls-2014-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.