PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Analysis of Smart Piezo-Magneto-Thermo-Elastic Composite and Reinforced Plates: Part I – Model Development

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A comprehensive micromechanical model for the analysis of a smart composite piezo-magneto-thermoelastic thin plate with rapidly-varying thickness is developed in the present paper. A rigorous three-dimensional formulation is used as the basis of multiscale asymptotic homogenization. The asymptotic homogenization model is developed using static equilibrium equations and the quasi-static approximation of Maxwell’s equations. The work culminates in the derivation of a set of differential equations and associated boundary conditions. These systems of equations are called unit cell problems and their solution yields such coefficients as the effective elastic, piezoelectric, piezomagnetic, dielectric permittivity and others. Among these coefficients, the so-called product coefficients are also determined which are present in the behavior of the macroscopic composite as a result of the interactions and strain transfer between the various phases but can be absent from the constitutive behavior of some individual phases of the composite material. The model is comprehensive enough to allow calculation of such local fields as mechanical stress, electric displacement and magnetic induction. In part II of this work, the theory is illustrated by means of examples pertaining to thin laminated magnetoelectric plates of uniform thickness and wafer-type smart composite plates with piezoelectric and piezomagnetic constituents. The practical importance of the model lies in the fact that it can be successfully employed to tailor the effective properties of a smart composite plate to the requirements of a particular engineering application by changing certain geometric or material parameters. The results of the model constitute an important refinement over previously established work. Finally, it is shown that in the limiting case of a thin elastic plate of uniform thickness the derived model converges to the familiar classical plate model.
Wydawca
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2014-08-07
zaakceptowano
2014-09-11
online
2014-12-10
Twórcy
  • Department of Mechanical Engineering and Materials
    Science and Engineering, Cyprus University of Technology,
    Limassol, Cyprus
  • Research Unit for Nanostructured Materials Systems, Department
    of Mechanical Engineering and Materials Science and Engineering,
    Cyprus University of Technology, Limassol, Cyprus
  • Department of Mechanical Engineering, Dalhousie
    University, PO Box 15000, Halifax, Nova Scotia, B3H 4R2,
    Canada
autor
  • Department of Mechanical Engineering and Materials
    Science and Engineering, Cyprus University of Technology,
    Limassol, Cyprus
  • Research Unit for Nanostructured Materials Systems, Department
    of Mechanical Engineering and Materials Science and Engineering,
    Cyprus University of Technology, Limassol, Cyprus
  • Department of Mechanical Engineering and Materials
    Science and Engineering, Cyprus University of Technology,
    Limassol, Cyprus
  • Research Unit for Nanostructured Materials Systems, Department
    of Mechanical Engineering and Materials Science and Engineering,
    Cyprus University of Technology, Limassol, Cyprus
Bibliografia
  • [1] Newnham R. E., Skinner D. P., Cross L. E., Connectivity andpiezoelectric-pyroelectric composites,Mat. Res. Bull. 13 (1978)525-536.[Crossref]
  • [2] Nan C.-W., Bichurin M. I., Dong S., Viehland D. and SrinivasanG., Multiferroic magnetoelectric composites: Historical perspective,status, and future directions, J. Appl. Phys 031101(1)– 031101 (2008) (35) .[Crossref]
  • [3] Bichurin M., Petrov V., Priya S., Bhalla A., Multiferroic magnetoelectriccomposites and their applications, Advances in CondensedMatter Physics, Article ID 129794 (2012) 1-3.
  • [4] Srinivasan G., Magnetoelectric composites, Annual Review ofMaterials Research, 40 (2010) 153-178.[Crossref]
  • [5] Bhatra D., Masud Md., De S. K., Chauduri B. K., Large magnetoelectriceffect and low-loss high relative permittivity in 0-3CuO/PVDF composite films exhibiting unusual ferromagnetismat room temperature, J. Phys. D: Appl. Phys. 45 (2012) 485002.
  • [6] Zhou H.-M., Li C., Xuan L.-M., Wei J., Zhao J.-X. Equivalentcircuit method research of resonant magnetoelectric characteristicin magnetoelectric laminate composites using nonlinearmagnetostrictive constitutive model, Smart Materials andStructures 20 (2011) 035001.[Crossref]
  • [7] Ju S., Chae S. H., Choi Y., Lee S., Lee H. W., Ji C.-H., A lowfrequency vibration energy harvester using magnetoelectriclaminate composite, Smart Materials and Structures 22 (2013)115037.[Crossref]
  • [8] Oh S. R., Wong T. C., Tan C. W., Yao K., Tay F. E., Fabrication ofpolymer multilayers on flexible substrates for energy harvesting,Smart Materials and Structures 23 (2014) 015013.[Crossref]
  • [9] Semenov A. A., Karmanenko S. F., Demidov V. E., KalinikosB. A., Srinivasan G., Slavin A. N., Mantese J. V., Ferriteferroelectriclayered structures for electrically and magneticallytunable microwave resonators, Applied Physics Letters 88(2006) 033503.[Crossref]
  • [10] Lottermoser T., Lonkai T., Amann U., Hohlwein D., Ihringer J.,Fiebig M., Magnetic phase control by an electric field, Nature430 (2004) 541-544.
  • [11] Shen Y., McLaughlin K. L., Gao J., Gray D., Shen L., Wang Y., LiM., Berry D., Li J., Viehland D. AC magnetic dipole localizationby a magnetoelectric sensor, Smart Materials and Structures21 (2012) 065007.[Crossref]
  • [12] Zhai J., Xing Z., Dong S., Li J., Viehland D., Detection of pico-Tesla magnetic fields using magnetoelectric sensors at roomtemperature, Applied Physics Letters 88 (2006) 062510.[Crossref]
  • [13] Harshe G., Doherty J. P., Newnham R. E., Theoretical modelingof 3-0/0-3 magnetoelectric composites, International Journalof Applied Electromagnetics in Materials, 4(2) (1993) 145-159
  • [14] Harshe G., Doherty J. P., Newnham R. E., Theoretical modelingof multilayer magnetoelectric composites, International Journalof Applied Electromagnetics in Materials, 4(2) (1993) 161-171 .
  • [15] Avellaneda M., Harshé G., Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites, J. Intel.Mat.Syst. Str., 5 (1994) 501-513.[Crossref]
  • [16] Huang J. H., Kuo W. S., The analysis of piezoelectric/piezomagnetic compositematerials containing ellipsoidalinclusions, Journal of Applied Physics, 81(3) (1997) 1378-1386.[Crossref]
  • [17] Huang J. H., Analytical predictions for themagnetoelectric couplingin piezomagnetic materials reinforced by piezoelectricellipsoidal inclusions, Physical Review B, 58(1) (1998) 12-15.[Crossref]
  • [18] Huang J. H., Chiu Y. H.,Liu H. K., Magneto-Electro-Elastic Eshelbytensors for a piezoelectric-piezomagnetic composite reinforcedby ellipsoidal inclusions, Journal of Applied Physics,83(10) (1998) 5364-5370.[Crossref]
  • [19] Huang J. H., Liu H. K., Dai W. L., The optimized fiber volumefraction for magnetoelectric coupling effect in piezoelectricpiezomagneticcontinuous fiber reinforced composites International,Journal of Engineering Science, 38(11) (2000) 1207-1217.[Crossref]
  • [20] Bichurin M. I., Petrov V. N., Srinivasan G., Modeling of magnetoelectriceffect in ferromagnetic/piezoelectricmultilayer composites,Ferroelectrics, 280 (2002) 165-175.[Crossref]
  • [21] Bichurin M. I., Petrov V. N., Averkin S. V., Liverts E., Presentstatus of theoretical modeling the magnetoelectric effect inmagnetostrictive-piezoelectric nanostructures. Part I: Low frequencyelectromechanical resonance ranges, J. Appl. Phys.,107(5), (2010) 053904(1)-053904(11).[Crossref]
  • [22] Soh A. K., Liu J. X., On the constitutive equations of magnetoelectroelasticsolids, Journal of Intelligent Materials Systemsand Structures, 16 (2005) 597-602.
  • [23] Bravo-Castillero J., Rodrigues-Ramos R., Mechkour H., Otero J.,Sabina F.J., Homogenization of magneto-electro-elastic multilaminatedmaterials, Q J Mechanics Appl Math, 61(3) (2008)311-332 .[Crossref]
  • [24] Ni Y., Priya S. and Khachaturyan A. G., Modeling of magnetoelectriceffect in polycrystalline multiferroic laminates influencedby the orientations of applied electric/magnetic fields,J Appl Phys, 105 (2009) 083914(1)-083914(4).[Crossref]
  • [25] Akbarzadeh A. H., Babaei M. H., Chen Z. T., The thermoelectromagnetoelasticbehavior of a rotating functionallygraded piezoelectric cylinder, Smart Mater. Struct., 20 (2011)065008(1)- 065008(11).[Crossref]
  • [26] Eshelby J. D., The determination of the elastic field of an ellipsoidalinclusion, and related problems, Proc. R. Soc. Lond. A,241(1226) (1957) 376-396.
  • [27] Mori T., Tanaka K., Average stress in matrix and average energyof materials with misfitting inclusions, Acta Metallurgicaet Materialia, 21 (1973) 571-574.[Crossref]
  • [28] Kirchner H. O. K. , Alshits V. I., Elastically anisotropic angularlyinhomogeneous media II. The Green’s function for piezoelectric,piezomagnetic and magnetoelectric media, PhilosophicalMagazine A, 74(4) (1996) 861-885.[Crossref]
  • [29] Pan E., Heyliger R. P., Free vibrations of simply supported andmultilayered magneto-electro-elastic plates, Journal of Soundand Vibration, 252(3) (2002) 429-442.[Crossref]
  • [30] Benveniste Y., Milton G. W., New exact results for the effectiveelectric, elastic, piezoelectric and other properties of compositeellipsoid assemblages, Journal of the Mechanics andPhysics of Solids, 51(10) (2003) 1773-1813.
  • [31] Nan C. W., Magnetoelectric effect in composite of piezoelectricand piezomagnetic phases, Physical ReviewB, 50(9) (1994)6082-6088.
  • [32] Spyropoulos C. P., Sih G. C. , Song Z. F., Magnetoelectroelasticcomposite with poling parallel to plane of line crack underout-of-plane deformation, Theoretical and Applied FractureMechanics, 40(2) (2003) 281-289.[Crossref]
  • [33] Tang T., Yu W., Variational Asymptotic homogenization of heterogeneouselectromagnetoelastic materials, Int. J. Eng. Sci.,46 (2008) 741-757.[Crossref]
  • [34] Tang T., Yu W., Micromechanical modeling of the multiphysicalbehavior of smart materials using the variational asymptoticmethod, SmartMater. Struct., 18(12) (2009) 125026 (1)-125026(14).
  • [35] Sunar M., Al-Garni Z., Ali M. H., Kahraman R., Finite Elementmodeling of thermopiezomagnetic smart structures, AIAA Journal,40(9) (2002) 1846-1851.[Crossref]
  • [36] Lee J., Boyd I.V. J.G., Lagoudas D.C., Effective properties ofthree-phase electro-magneto-elastic composites, Int. J. Eng.Sci., 43 (2005) 790-825.[Crossref]
  • [37] Liu Y. X., Wan J. G., Liu J.-M., Nan C. W., Numerical modeling ofmagnetoelectric effect in a composite structure, J. Appl. Phys.,94(8) (2003) 5111-5117.[Crossref]
  • [38] Mininger X., Galopin N., Dennemont Y., Bouillault F., 3D finiteelement model formagnetoelectric sensors, The EuropeanPhysical Journal of Applied Physics, 52(2) (2010) 23303(1)-23303(5).
  • [39] Sun K. H., Kim Y. Y., Design ofmagnetoelectric multiferroic heterostructuresby topology optimization, J. Phys. D: Appl. Phys.,44 (2011) 185003(1)- 185003(8).
  • [40] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic analysisfor periodic structures, Amsterdam: North-Holland, 1978.
  • [41] Sanchez-Palencia E., Non-Homogeneous media and vibrationtheory. Lecture Notes in Physics, Berlin: Springer-Verlag,1980.
  • [42] Bakhvalov N., Panasenko G., Homogenisation: Averaging processesin periodic media, Amsterdam: Kluwer Academic Publishers,1984.
  • [43] Cioranescu D., Donato P., An Introduction to homogenization,Oxford: Oxford University Press, 1999.
  • [44] Kalamkarov A. L., Composite and Reinforced Elements of Construction,New York: Wiley,1992.
  • [45] Kalamkarov A. L., Kolpakov A. G., Analysis, design and optimizationof composite structures ,New York: Wiley, 1997.
  • [46] Kalamkarov A. L., Georgiades A. V., Modeling of Smart Compositeson Account of Actuation, Thermal Conductivity and HygroscopicAbsorption Composites part B Eng, 33 (2002) 141-152.
  • [47] Georgiades A. V., Challagulla K. S., Kalamkarov A. L., Asymptotichomogenization modeling of smart composite generallyorthotropic grid-reinforced shells. Part II-Applications, EuropeanJournal of Mechanics A-Solids, 29 (2010) 541-556.[Crossref]
  • [48] Hassan E. M., Kalamkarov A. L., Georgiades A. V., ChallagullaK. S., Asymptotic homogenization model for smart 3D gridreinforcedcomposite structures with generally orthotropicconstituents, SmartMaterials and Structures, 18(7) art. (2009)075006.
  • [49] Saha G. C., Kalamkarov A. L., Georgiades A. V., Micromechanicalanalysis of effective piezoelastic properties of smart compositesandwich shells made of generally orthotropic materials,Smart Materials and Structures, 16(3) (2007) 866-883.[Crossref]
  • [50] Guedes J. M. and Kikuchi N., Preprocessing and postprocessingfor materials based on the homogenization methodwith adaptive finite element methods, Comput. Methods Appl.Mech. Engrg., 83 (1990) 143-198.[Crossref]
  • [51] Sevostianov I., Kachanov M., Effect of interphase layers on theoverall elastic and conductive properties of matrix composites.Applications to nanosize inclusion, Int. J. Solids Struct.,44 (2007) 1304-1315.[Crossref]
  • [52] Duvaut G., Analyse fonctionnelle et méchanique des milieuxcontinus, Proceedings of the 14th IUTAM Congress (Delft, Holland)(1976) 119-132.
  • [53] Duvaut G., Metellus A.-M., Homogénéisation d’une plaquemince en flexion de structure périodique et symétrique, C.R.Acad. Sci., Ser. A. 283 (1976) 947-950.
  • [54] Andrianov I. V., Manevich L. I., Shell design using the homogenizationmethod, Uspekhi Mekh, 6 (1983) 3-29.
  • [55] Andrianov I. V., Lesnichaya V., Manevich L. I., Homogenizationmethods in the statics and dynamics of ribbed shells (Moscow,Nauka) (1985).
  • [56] Caillerie D Equations de la diffusion stationnaire dans un domainecomportant une distribution périodique d’inclusionsaplaties de grande conductivité, C.R. Acad. Sci., Ser. 1 292(1)(1981) 115-118.
  • [57] Caillerie D., Homogénéisation des equation de la diffusion stationnairedans les domaines cylindrique aplatis, Anal. Numér.,15 (1981) 295-319.
  • [58] Kohn R. V., Vogelius M., A new model for thin plates withrapidly varying thickness, Int. J. of Solids and Struct., 20 (1984)333-350.
  • [59] Kohn R. V., Vogelius M., A new model for thin plates withrapidly varying thickness, II: A convergence proof, Quart. J.Appl. Math., 43 (1985) 1-22.
  • [60] Challagulla K. S., Georgiades A. V., Kalamkarov A. L., Asymptotichomogenization modeling of smart composite gener ally orthotropic grid-reinforced shells. Part I-Theory, EuropeanJournal of Mechanics A-Solids, 29 (2010) 530-540.[Crossref]
  • [61] Kalamkarov A. L., Kolpakov A. G., A new asymptotic model fora composite piezoelastic plate, International Journal of Solidsand Structures, 38 (2001) 6027-6044.
  • [62] Hadjiloizi D. A., Georgiades A. V., Kalamkarov A. L. Dynamicmodeling and determination of effective properties of smartcomposite plates with rapidly varying thickness, InternationalJournal of Engineering Science, 56 (2012) 63-85.[Crossref]
  • [63] Hadjiloizi D.A., Georgiades, A.V, Kalamkarov, A.L, Jothi S., MicromechanicalModel of Piezo-Magneto-Thermo-Elastic CompositeStructures: Part I-Theory, European Journal of MechanicsA-Solids, 39, (2013), 298-312.[Crossref]
  • [64] Hadjiloizi D.A., Georgiades A.V., Kalamkarov A.L, Jothi S., MicromechanicalModel of Piezo-Magneto-Thermo-Elastic CompositeStructures: Part II-Applications, European Journal ofMechanicsA-Solids, 39, (2013), 313-326.
  • [65] Kalamkarov A. L., Georgiades A. V., Asymptotic homogenizationmodels for smart composite plates with rapidly varyingthickness: Part I-Theory, Journal of Multiscale ComputationalEngineering, 2(1) (2004) 133-148.
  • [66] Georgiades A.V., Kalamkarov A. L., Asymptotic homogenizationmodels for smart composite plates with rapidly varyingthickness: Part II-Applications, Journal ofMultiscale ComputationalEngineering, 2(1) (2004) 149-174.[Crossref]
  • [67] Hadjiloizi D.A., Kalamkarov A.L., Metti Ch., Georgiades A.V.,Analysis of Piezo-Magneto-Thermo-Elastic Composite and ReinforcedPlates: Part II – Applications, Curved and LayeredStructures, 1 (2014) 32-58.
  • [68] Podstrigach Ya. S. and Shvets R.N., Thermoelasticity of ThinShells, Naukova Dumka Publ., Kiev, 1978.
  • [69] Podstrigach Ya. S., Lomakin V. A., Kolyano Yu. M., Thermoelasticityof Non-homogeneous Structures, Nauka, Moscow, 1984.
  • [70] Gibson R. F., Principles of Composite Material Mechanics,McGraw-Hill, New York, 1994.
  • [71] Kalamkarov A.L. (2014) Asymptotic Homogenization Methodand Micromechanical Models for Composite Materials andThin-Walled Composite Structures, in “Mathematical Methodsand Models in Composites,” pp. 1-60, Imperial College Press,London.
  • [72] Kalamkarov A.L. and Challagulla K.S. (2013) Effective Propertiesof Composite Materials, Reinforced Structures and SmartComposites. Asymptotic Homogenization Approach, in “EffectiveProperties of Heterogeneous Materials,” Solid Mechanicsand Its Applications, Vol. 193, pp. 283-363. Springer, Dordrecht,New York.
  • [73] Vinson J. R., Sierakowski R. L., The Behavior of Structures Composedof Composite Materials, Kluwer Academic Publishers,Dordrecht, Netherlands, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_cls-2014-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.