PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 50 | 2 | 127-136
Tytuł artykułu

Relations between regular A-optimal chemical and spring balance weighing designs with diagonal covariance matrix of errors

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study the relationships between regular A-optimal spring balance weighing designs and regular A-optimal chemical balance weighing designs. We give the basic relation between these designs in the case where the errors are uncorrelated and they have different variances. We give some examples of methods of construction of such designs.
Wydawca
Czasopismo
Rocznik
Tom
50
Numer
2
Strony
127-136
Opis fizyczny
Daty
wydano
2013-12-01
online
2013-12-10
Twórcy
  • Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland, bronicer@up.poznan.pl
  • Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland, magra@up.poznan.pl
Bibliografia
  • Abrego B., Fernandez-Merchant S., Neubauer G.N., Watkins W. (2003): D-optimal weighing designs for n = -1mod4 objects and a large number of weighings. Linear Algebra and its Applications 374: 175-218.[WoS]
  • Banerjee K.S. (1975): Weighing Designs for Chemistry, Medicine. Economics, Operations Research, Statistics. Marcel Dekker Inc., New York.
  • Ceranka B., Graczyk M. (2004): A-optimal chemical balance weighing design. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis, Mathematica 15: 41-54.
  • Ceranka B., Graczyk M., Katulska K. (2006): A-optimal chemical balance weighing design with nonhomogeneity of variances of errors. Statistics and Probability Letters 76: 653 - 665
  • Ceranka B., Graczyk M., Katulska K. (2007): On certain A-optimal chemical balance weighing designs. Computational Statistics and Data Analysis 51: 5821-5827.[WoS]
  • Ceranka B., Katulska K. (2001): A-optimal chemical balance weighing design with diagonal covariance matrix of errors. Moda 6, Advances in Model Oriented Design and Analysis, A.C. Atkinson, P. Hackl, W.G. Mffller, eds., Physica-Verlag, Heidelberg, New York, 29-36. Chadjiconstantinidis S., Chadjipadelis T. (1994): A construction method of new D-A-optimal designs when N = 3mod4 and к < N-1. Discrete Mathematics 131: 39-50.
  • Graczyk M. (2011): A-optimal biased spring balance design. Kybernetika 47, 893-901.
  • Graczyk M. (2012a): Notes about A-optimal spring balance weighing design. Journal of Statistical Planning and Inference 142: 781-784.
  • Graczyk M. (2012b): Regular A-optimal spring balance weighing designs. Revstat 10: 323-333.
  • Jacroux M., Notz W. (1983): On the optimality of spring balance weighing designs. The Annals of Statistics 11: 970-978.
  • Kageyama S., Saha G.M. (1983): Note on the construction of optimum chemical balance weighing designs. Ann. Inst. Statist. Mat. 35A: 447-452.
  • Neubauer G.N., Pace R.G. (2010): D-optimal (0,1)-weighing designs for eight objects. Linear Algebra and its Applications 432: 2634-2657.[WoS]
  • Masaro J., Wong C.S. (2008): Robustness of A-optimal designs. Linear Algebra and its Applications 429: 1392-1408.[WoS]
  • Pukelsheim F. (1993): Optimal Design of Experiment. John Wiley and Sons, New York.
  • Raghavarao D. (1971): Constructions and Combinatorial Problems in Designs of Experiments. John Wiley Inc., New York.
  • Shah K.R., Sinha B.K. (1989): Theory of Optimal Designs. Springer-Verlag, Berlin.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_bile-2013-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.