Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2012 | 49 | 2 | 81-94

Tytuł artykułu

The extreme value Birnbaum-Saunders model, its moments and an application in biometry

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Birnbaum-Saunders (BS) model is a life distribution that has been widely studied and applied. Recently, a new version of the BS distribution based on extreme value theory has been introduced, named the extreme value Birnbaum-Saunders (EVBS) distribution. In this article we provide some further details on the EVBS models that can be useful as a supplement to the existing results. We use these models to analyse real survival time data for patients treated with alkylating agents for multiple myeloma. This analysis allow us to show the adequacy of these new statistical distributions and identify them as models useful for medical practitioners in order to predict survival times for such patients and evaluate changes in their treatment dose.

Wydawca

Czasopismo

Rocznik

Tom

49

Numer

2

Strony

81-94

Opis fizyczny

Daty

wydano
2012-12-01
online
2013-08-17

Twórcy

  • Universidade de Lisboa, DEIO, CEAUL and FCUL, Portugal
  • Departamento de Matemática, Universidade do Minho, Portugal
  • Departamento de Estadística, Universidad de Valparaíso, Chile

Bibliografia

  • Abramowitz M., Stegun I.A. (1972): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
  • Birnbaum Z.W., Saunders S.C. (1969): A new family of life distributions. J. Applied Probab. 6: 319-327.
  • Ferreira M., Gomes M.I., Leiva V. (2012): On an Extreme Value Version of the Birnbaum-Saunders Distribution. Revstat (in press).
  • Fréchet M. (1927): Sur la loi de probabilité de l'écart maximum. Ann. Société Polonaise de Mathématique 6: 93-116.
  • Fisher R.A., Tippett L.H.C. (1928): Limiting forms of the frequency of the largest or smallest member of a sample. Proc. Cambridge Phil. Soc. 24: 180-190.
  • Gnedenko B.V. (1943): Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44: 423-453.
  • Gomes M.I., Canto e Castro L., Fraga Alves M.I., Pestana D. (2008): Statistics of extremes for iid data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions. Extremes 11(1): 3-34
  • Jenkinson A.F. (1955): The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quart. J. Royal Meteorol. Society 81: 158-171.
  • Leiva V., Barros M., Paula G.A., Galea, M. (2007): Inuence diagnostics in log- Birnbaum-Saunders regression models with censored data. Comp. Stat. Data Anal. 51: 5694-5707.
  • Sanhueza A., Leiva V., Balakrishnan N. (2008): The generalized Birnbaum- Saunders distribution and its theory, methodology and application. Comm. Statist. - Theory and Methods 37: 645-670.
  • Mises R. von (1936): La distribution de la plus grande de n valeurs. Revue Math. Union Interbalcanique, 1, 141-160.
  • Reprinted in Selected Papers of Richard von Mises. Amer. Math. Soc. 2(1964): 271-294.
  • Vilca F., Leiva V. (2006): A new fatigue life model based on the family of skewelliptical distributions. Comm. Statist. - Theory and Methods 35: 229-244.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_2478_bile-2013-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.