Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 2 | 1 |

Tytuł artykułu

Differentiability and Approximate Differentiability for Intrinsic Lipschitz Functions in Carnot Groups and a Rademacher Theorem

Treść / Zawartość

Warianty tytułu

Języki publikacji



A Carnot group G is a connected, simply connected, nilpotent Lie group with stratified Lie algebra. We study intrinsic Lipschitz graphs and intrinsic differentiable graphs within Carnot groups. Both seem to be the natural analogues inside Carnot groups of the corresponding Euclidean notions. Here ‘natural’ is meant to stress that the intrinsic notions depend only on the structure of the algebra of G. We prove that one codimensional intrinsic Lipschitz graphs are sets with locally finite G-perimeter. From this a Rademacher’s type theorem for one codimensional graphs in a general class of groups is proved.







Opis fizyczny




  • Dipartimento di Matematica, Università di Bologna, Piazza di porta San Donato, 5, 40126 Bologna, Italy
  • Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini, 50, 20133 Milano, Italy
  • Dipartimento di Matematica, Università di Trento, Povo, Via Sommarive 14, 38123, Trento, Italy


  • [1] L.Ambrosio, N.Fusco, D.Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Oxford University Press, (2000).
  • [2] L.Ambrosio, B.Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Annalen, 318 (2000), 527–555.
  • [3] L.Ambrosio, B.Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80.
  • [4] L.Ambrosio, B.Kirchheim, E. Le Donne, Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane, J. Geom. Anal., 19, (2009), no. 3, 509–540.
  • [5] L.Ambrosio, F. Serra Cassano, D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16, (2006), 187–232.
  • [6] G.Arena, Intrinsic Graphs, Convexity and Calculus on Carnot Groups, PhD Thesis, University of Trento, (2008).
  • [7] G.Arena, R.Serapioni, Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs, Calc. Var. Partial Differential Equations 35 (2009), no. 4, 517–536.
  • [8] F.Bigolin, D.Vittone, Some remarks about parametrizations of intrinsic regular surfaces in the Heisenberg group, Publ. Mat. 54 (2010), no. 1, 159–172.
  • [9] F. Bigolin, F. Serra Cassano, Distributional solutions of Burgers’ equation and intrinsic regular graphs in Heisenberg groups, J. Math. Anal. Appl. 366 (2010), no. 2, 561–568.
  • [10] F. Bigolin, F. Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non-linear first-order PDEs, Adv. Calc. Var. 3 (2010), no. 1, 69–97.
  • [11] A.Bonfiglioli, E.Lanconelli, F.Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub–Laplacians, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, New York (2007).
  • [12] G.Citti, M.Manfredini, Implicit function theorem in Carnot-Carathéodory spaces. Commun. Contemp. Math. 8 (2006), no. 5, 657–680.
  • [13] G.Citti, M.Manfredini, Blow-up in non homogeneous Lie groups and rectifiability. Houston J.Math. 31 (2005), no. 2, 333–353.
  • [14] L.C.Evans, R.F.Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, BocaRaton, (1992).
  • [15] H.Federer, Geometric Measure Theory, Springer, (1969).
  • [16] G.B.Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161–207.
  • [17] B.Franchi, R.Serapioni, Intrinsic Lipschitz graphs within Carnot groups, Preprint 2014
  • [18] B.Franchi, R.Serapioni, F.Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479– 531.
  • [19] B.Franchi, R.Serapioni, F.Serra Cassano, Regular hypersurfaces, Intrinsic Perimeter and Implicit Function Theoremin Carnot Groups, Comm. Anal. Geom., 11 (2003), no 5, 909–944.
  • [20] B.Franchi, R.Serapioni, F.Serra Cassano, On the Structure of Finite Perimeter Sets in Step 2 Carnot Groups, The Journal of Geometric Analysis. 13 (2003), no. 3, 421–466.
  • [21] B.Franchi, R.Serapioni, F.Serra Cassano, Intrinsic Lipschitz graphs in Heisenberg groups. J. Nonlinear Convex Anal. 7 (2006), no. 3, 423–441.
  • [22] B.Franchi, R.Serapioni, F.Serra Cassano, Regular submanifolds, graphs and area formula in Heisenberg Groups. Advances in Math. 211 (2007), no.1, 152–203.
  • [23] B.Franchi, R.Serapioni, F.Serra Cassano, Rademacher theoremfor intrinsic Lipschitz continuous functions, J. Geom. Anal. 21 (2011), 1044–1084.
  • [24] N.Garofalo, D.M.Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49 (1996), 1081–1144.
  • [25] M.Gromov, Metric structures for Riemannian and Non Riemannian Spaces, Progress inMathematics, 152, Birkhauser Verlag, Boston, (1999).
  • [26] B.Kirchheim, F.Serra Cassano, Rectifiability and parameterizations of intrinsically regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa, Cl.Sc. (5) III, (2005), 871–896.
  • [27] R. Korte, P. Lahti, N. Shanmugalingam, Semmes family of curves a a characterization of functions of bounded variation in terms of curves, (2013).
  • [28] V.Magnani, Elements of Geometric Measure Theory on Sub-Riemannian Groups, Tesi di Perfezionamento, Scuola Normale Superiore, Pisa, (2003).
  • [29] V.Magnani, Towards differential calculus in stratified groups, Journal of Australian Mathematical Society, 95 no.1, (2013), 76–128.
  • [30] M.Marchi, Regularity of sets with constant intrinsic normal in a class of Carnot groups to appear on Ann.Inst.Fourier (Grenoble).
  • [31] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, (1995).
  • [32] P.Mattila, R.Serapioni, F.Serra Cassano, Characterizations of intrinsic rectifiability in Heisenberg groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 9 (2010), no. 4, 687–723.
  • [33] J.Mitchell, On Carnot-Carathèodory metrics, J.Differ. Geom. 21 (1985), 35–45.
  • [34] R.Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs 91, American Mathematical Society, Providence, RI (2002).
  • [35] S. Nicolussi Golo, The tangent space in Sub-Riemannian Geometry, Doctoral Thesis, Università di Trento, (2012).
  • [36] P.Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1–60.
  • [37] S.D.Pauls, A notion of rectifiability modelled on Carnot groups, Indiana Univ. Math. J. 53 (2004), no. 1, 49–81.
  • [38] S. Semmes, On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A–weights Rev. Mat. Iberoamericana 12 (1996), no. 2, 337–410.
  • [39] E.M.Stein, Harmonic Analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton (1993).
  • [40] N.Th.Varopoulos, L.Saloff-Coste, T.Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, (1992)
  • [41] D.Vittone, Submanifolds in Carnot groups, Edizioni della Normale, Scuola Normale Superiore, Pisa, (2008).
  • [42] D.Vittone, Lipschitz surfaces, Perimeter and trace Theorems for BV Functions in Carnot-Caratheéodory Spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 11(4), (2012), 939–998.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.