Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 2 | 1 |

Tytuł artykułu

On the Curvature and Heat Flow on Hamiltonian Systems


Treść / Zawartość

Warianty tytułu

Języki publikacji



We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.

Słowa kluczowe







Opis fizyczny




  • Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan


  • [1] A. A. Agrachev, Curvature and hyperbolicity of Hamiltonian systems (Russian), Tr. Mat. Inst. Steklova 256 (2007), Din. Sist. i Optim., 31-53; translation in Proc. Steklov Inst. Math. 256 (2007), 26-46.
  • [2] A. A. Agrachev, Geometry of optimal control problems and Hamiltonian systems, Nonlinear and optimal control theory, 1-59, Lecture Notes in Math., 1932, Springer, Berlin, 2008.
  • [3] A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry. I. Regular extremals, J. Dynam. Control Systems 3 (1997), 343-389.
  • [4] A. A. Agrachev and P. W. Y. Lee, Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds, Preprint (2009). Available at arXiv:0903.2550
  • [5] A. A. Agrachev and P.W. Y. Lee, Bishop and Laplacian comparison theorems on three dimensional contact subriemannian manifolds with symmetry, to appear in J. Geom. Anal. Available at arXiv:1105.2206
  • [6] M. Agueh, Finsler structure in the p-Wasserstein space and gradient flows, C. R.Math. Acad. Sci. Paris 350 (2012), 35-40.
  • [7] J. C. Álvarez Paiva and C. E. Durán, Geometric invariants of fanning curves, Adv. in Appl. Math. 42 (2009), 290-312.
  • [8] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser Verlag, Basel, 2005.
  • [9] L. Ambrosio, N. Gigli and G. Savaré, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam. 29 (2013), 969-996.[Crossref]
  • [10] L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math. 195 (2014), 289-391.
  • [11] D. Bakry and M. Émery, Diffusions hypercontractives (French), Séminaire de probabilités, XIX, 1983/84, 177-206, Lecture Notes in Math. 1123, Springer, Berlin, 1985.
  • [12] D. Bao, S.-S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry, Springer-Verlag, New York, 2000.
  • [13] P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS) 9 (2007), 85-121.[Crossref]
  • [14] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375-417.
  • [15] H. Brézis, Opérateursmaximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (French), North- Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.
  • [16] D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), 219-257.
  • [17] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298.
  • [18] M. Erbar, The heat equation on manifolds as a gradient flow in the Wasserstein space, Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), 1-23.
  • [19] A. Fathi and A. Figalli, Optimal transportation on non-compact manifolds, Israel J. Math. 175 (2010), 1-59.
  • [20] P. Foulon, Géométrie des équations différentielles du second ordre (French), Ann. Inst. H. Poincaré Phys. Théor. 45 (1986), 1-28.
  • [21] N. Fusco, M. Gori and F. Maggi, A remark on Serrin’s theorem, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 425-433.
  • [22] N. Gigli, On the differential structure of metric measure spaces and applications, Preprint (2012). Available at arXiv:1205.6622
  • [23] N. Gigli, K. Kuwada and S. Ohta, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math. 66 (2013), 307-331.
  • [24] N. Gigli and S. Ohta, First variation formula in Wasserstein spaces over compact Alexandrov spaces, Canad. Math. Bull. 55 (2012), 723-735.[Crossref]
  • [25] J. Grifone, Structure presque-tangente et connexions. I (French), Ann. Inst. Fourier (Grenoble) 22 (1972), 287-334.[Crossref]
  • [26] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), 1-17.
  • [27] N. Juillet, Geometric inequalities and generalized Ricci bounds in the Heisenberg group, Int.Math. Res. Not. IMRN (2009), 2347-2373.
  • [28] M. Kell, On interpolation and curvature via Wasserstein geodesics, Preprint (2013). Available at arXiv:1311.5407
  • [29] M. Kell, q-heat flow and the gradient flow of the Renyi entropy in the p-Wasserstein space, Preprint (2014). Available at arXiv:1401.0840
  • [30] P. W. Y. Lee, A remark on the potentials of optimal transport maps, Acta Appl. Math. 115 (2011), 123-138.
  • [31] P. W. Y. Lee, Displacement interpolations from a Hamiltonian point of view, J. Funct. Anal. 265 (2013), 3163-3203.
  • [32] P. W. Y. Lee, C. Li and I. Zelenko, Measure contraction properties of contact sub-Riemannian manifolds with symmetry, Preprint (2013). Available at arXiv:1304.2658
  • [33] J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal. 245 (2007), 311-333.
  • [34] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), 903-991.
  • [35] J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal. 261 (2011), 2250-2292.
  • [36] U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), 199-253.
  • [37] R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 (2001), 589-608.[Crossref]
  • [38] S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007), 805-828.
  • [39] S. Ohta, Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math. 131 (2009), 475-516.
  • [40] S. Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry,Math. Ann. 343 (2009), 669-699.
  • [41] S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), 211-249.
  • [42] S. Ohta, Vanishing S-curvature of Randers spaces, Differential Geom. Appl. 29 (2011), 174-178.[Crossref]
  • [43] S. Ohta, Splitting theorems for Finslermanifolds of nonnegative Ricci curvature, to appear in J. Reine Angew.Math. Available at arXiv:1203.0079
  • [44] S. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), 1386-1433.
  • [45] S. Ohta and K.-T. Sturm, Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal. 204 (2012), 917-944.
  • [46] S. Ohta and K.-T. Sturm, Bochner-Weitzenböck formula and Li-Yau estimates on Finslermanifolds, Adv.Math. 252 (2014), 429-448.
  • [47] S. Ohta and A. Takatsu, Displacement convexity of generalized relative entropies, Adv. Math. 228 (2011), 1742-1787.
  • [48] S. Ohta and A. Takatsu, Displacement convexity of generalized relative entropies. II, Comm. Anal. Geom. 21 (2013), 687-785.[Crossref]
  • [49] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), 361-400.
  • [50] Z. Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997), 235-242.
  • [51] M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), 923-940.
  • [52] G. Savaré, Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds, C. R. Math. Acad. Sci. Paris 345 (2007), 151-154.
  • [53] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc. 101 (1961), 139-167.
  • [54] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128 (1997), 306-328.
  • [55] Z. Shen, Lectures on Finsler geometry, World Scientific Publishing Co., Singapore, 2001.
  • [56] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), 65-131.
  • [57] K.-T. Sturm, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), 133-177.
  • [58] C. Villani, Optimal transport, old and new, Springer-Verlag, Berlin, 2009.
  • [59] G. Wang and C. Xia, A sharp lower bound for the first eigenvalue on Finsler manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), 983-996.
  • [60] G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), 377-405.
  • [61] C. Xia, Local gradient estimate for harmonic functions on Finsler manifolds, to appear in Calc. Var. Partial Differential Equations. Available at arXiv:1308.3609

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.