Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 1 | 200-231
Tytuł artykułu

On Asymmetric Distances

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.
  • [1] D. Bao, S. S. Chern, and Z. Shen. An Introduction to Riemann-Finsler Geometry. (Springer–Verlag), (2000).
  • [2] Leonard M. Blumenthal. Theory and applications of distance geometry. Second edition. Chelsea Publishing Co.,New York, (1970).
  • [3] V. I. Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, (2007).
  • [4] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33 of Graduate Studies inMathematics. American Mathematical Society, Providence, RI, (2001).
  • [5] H. Busemann. Local metric geometry. Trans. Amer. Math. Soc., 56:200–274, (1944).
  • [6] H. Busemann. The geometry of geodesics, volume 6 of Pure and applied mathematics. Academic Press (New York),(1955).
  • [7] H. Busemann. Recent synthetic differential geometry, volume 54 of Ergebnisse der Mathematik und ihrer Grenzgebiete.Springer Verlag, (1970).
  • [8] G. Buttazzo. Semicontinuity, relaxation and integral representation in the calculus of variation. Number 207 inscientific & technical. Longman, (1989).
  • [9] S. Cohn-Vossen. Existenz kürzester Wege. Compositio math., Groningen,, 3:441–452, (1936).
  • [10] Bernard Dacorogna. Direct methods in the calculus of variations, volume 78 of Applied Mathematical Sciences.Springer, New York, second edition, (2008).
  • [11] Alessandro Duci and Andrea Mennucci. Banach-like metrics and metrics of compact sets. eprint arXiv:0707.1174.(2007).
  • [12] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces, volume 152 of Progress in Mathematics.Birkhäuser Boston, (2007).
  • [13] Gonçalo Gutierres and Dirk Hofmann. Approaching metric domains. Applied Categorical Structures, pages 1–34,(2012).
  • [14] H. Hopf and W. Rinow. Ueber den Begriff der vollständigen differentialgeometrischen Fläche. Comment. Math. Helv.,3(1):209–225, (1931).[Crossref]
  • [15] A. C. G. Mennucci. Regularity and variationality of solutions to Hamilton-Jacobi equations. part ii: variationality,existence, uniqueness. Applied Mathematics and Optimization, 63(2), (2011).[WoS]
  • [16] A. C. G. Mennucci. Geodesics in asymmetric metric spaces. In preparation, (2013).
  • [17] Athanase Papadopoulos. Metric spaces, convexity and nonpositive curvature, volume 6 of IRMA Lectures in Mathematicsand Theoretical Physics. European Mathematical Society (EMS), Zürich, (2005).
  • [18] B. B. Phadke. Nonsymmetric weakly complete g-spaces. Fundamenta Mathematicae, (1974).
  • [19] E. M. Zaustinsky. Spaces with non-symmetric distances. Number 34 in Mem. Amer. Math. Soc. AMS, (1959).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.