PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Open Mathematics

2005 | 3 | 2 | 203-214
Tytuł artykułu

### On the riemann zeta-function and the divisor problem II

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of $$\left| {\zeta \left( {\frac{1}{2} + it} \right)} \right|$$ . If E *(t)=E(t)-2πΔ*(t/2π) with $$\Delta *\left( x \right) + 2\Delta \left( {2x} \right) - \frac{1}{2}\Delta \left( {4x} \right)$$ , then we obtain $$\int_0^T {\left| {E*\left( t \right)} \right|^5 dt} \ll _\varepsilon T^{2 + \varepsilon }$$ and $$\int_0^T {\left| {E*\left( t \right)} \right|^{\frac{{544}}{{75}}} dt} \ll _\varepsilon T^{\frac{{601}}{{225}} + \varepsilon } .$$ It is also shown how bounds for moments of | E *(t)| lead to bounds for moments of $$\left| {\zeta \left( {\frac{1}{2} + it} \right)} \right|$$ .
Słowa kluczowe
EN
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
203-214
Opis fizyczny
Daty
wydano
2005-06-01
online
2005-06-01
Twórcy
autor
Bibliografia
• [1] F.V. Atkinson: “The mean value of the Riemann zeta-function”, Acta Math., Vol. 81, (1949), pp. 353–376. http://dx.doi.org/10.1007/BF02395027
• [2] D.R. Heath-Brown: “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. (Oxford), Vol. 29, (1978), pp. 443–462.
• [3] M.N. Huxley: Area, Lattice Points and Exponential Sums, Oxford Science Publications, Clarendon Press, Oxford, 1996.
• [4] M.N. Huxley: “Exponential sums and lattice points III”, Proc. London Math. Soc., Vol. 387, (2003), pp. 591–609. http://dx.doi.org/10.1112/S0024611503014485
• [5] A. Ivić: “Large values of the error term in the divisor problem”, Invent. Math., Vol. 71, (1983), pp. 513–520. http://dx.doi.org/10.1007/BF02095990
• [6] A. Ivić: The Riemann zeta-function, John Wiley & Sons, New York, 1985; 2nd Ed., Dover, Mineola, New York, 2003.
• [7] A. Ivić: The mean values of the Riemann zeta-function, LNs, Vol. 82, Tata Inst. of Fundamental Research, Bombay (distr. by Springer Verlag, Berlin etc.), 1991.
• [8] A. Ivić: “On the Riemann zeta-function and the divisor problem”, Central European J. Math., Vol. 2 (4), (2004), pp. 1–15.
• [9] A. Ivić and P. Sargos: “On the higher moments of the error term in the divisor problem”, to appear.
• [10] M. Jutila: “Riemann's zeta-function and the divisor problem”, Arkiv Mat., Vol. 21, (1983), pp. 75–96; “Riemann's zeta-function and the divisor problem II”, Arkiv Mat., Vol. 31, (1993), pp. 61–70. http://dx.doi.org/10.1007/BF02384301
• [11] O. Robert and P. Sargos: “Three-dimensional exponential sums with monomials”, J. reine angew. Math., in press.
Typ dokumentu
Bibliografia
Identyfikatory