For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.
[1] R. Balbes and Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974.
[2] D. Bu§neag and D. Piciu: “Meet-irreducible ideals in an MV-algebra”, Analele Universitąţii din Craiova, Seria Matematica-Informatica, Vol. XXVIII, (2001), pp. 110–119.
[3] D. Buşneag and D. Piciu: “On the lattice of ideals of an MV-algebra”, Scientiae Mathematicae Japonicae, Vol. 56, (2002), pp. 367–372.
[4] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici: Algebraic foundation of many-valued reasoning, Kluwer Academic Publ., Dordrecht, 2000.
[5] A. Diego: “Sur les algèbres de Hilbert”, In. Ed. Hermann: Collection de Logique Mathématique, Serie A, XXI, Paris, 1966.
[6] G. Grätzer: Lattice theory, W. H. Freeman and Company, San Francisco, 1979.
[7] G. Georgescu and M. Ploščica: “Values and minimal spectrum of an algebraic lattice”, Math. Slovaca, Vol. 52, (2002), pp. 247–253.
[8] P. Hájek: Metamathematics of Fuzzy Logic, Kluwer Academic Publ., Dordrecht, 1998.
[9] A. Iorgulescu: “Iséki algebras. Connections with BL-algebras”, to appear in Soft Computing.
[10] A. Di Nola, G. Georgescu, A. Iorgulescu: “Pseudo-BL-algebras”, to appear in Multiple Valued Logic.
[11] H. Rasiowa, An Algebraic Approach to Non-Classical Logics, PWN and North-Holland Publishing Company, 1974.
[12] E. Turunen: Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999.