PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2004 | 2 | 4 | 573-583
Tytuł artykułu

On the existence of solutions for nonlinear impulsive periodic viable problems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we prove the existence of periodic solutions for nonlinear impulsive viable problems monitored by differential inclusions of the type x′(t)∈F(t,x(t))+G(t,x(t)). Our existence theorems extend, in a broad sense, some propositions proved in [10] and improve a result due to Hristova-Bainov in [13].
Wydawca
Czasopismo
Rocznik
Tom
2
Numer
4
Strony
573-583
Opis fizyczny
Daty
wydano
2004-08-01
online
2004-08-01
Twórcy
Bibliografia
  • [1] D.D. Bainov, V. Covachev: Impulsive differential equations with a small parameter, World Scientific, Series on Advances in Math. for Applied sciences, 1994.
  • [2] D.D. Bainov, P.S. Simeonov: Systems with impulsive effect. Stability, theory and applications, Ellis Horwood Series in Maths and Appl., Ellis Horwood, Chicester, 1989.
  • [3] D.D. Bainov, P.S. Simeonov: Impulsive differential equations. Asymptotic properties of the solutions, World Scientific, Series on Advances in Math. for Applied Sciences, 1995.
  • [4] M. Benchohra, A. Boucherif: “Initial value problems for impulsive differential inclusions of first order”, Diff. Eqns. Dyn. Syst., Vol. 8, (2000), pp. 51–66.
  • [5] M. Benchohra, A. Boucherif: “An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces”, Arch. Math., Vol. 36, (2000), pp. 159–169.
  • [6] M. Benchohra, A. Boucherif, J.J. Nieto: “On initial value problems for a class of first order impulsive differential inclusions”, Disc. Math. Diff. Incl. Control Optim., Vol. 21, (2001), pp. 159–171.
  • [7] M. Benchohra, J. Henderson, S.K. Ntouyas: “On a periodic boundary value problem for first order impulsive differential inclusions”, Dyn. Syst. Appl., Vol. 10, (2001), pp. 477–488.
  • [8] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahabi: “Existence results for impulsive lower semicontinuous differential inclusions”, Int. J. Pure Appl. Math., Vol. 1, (2002), pp. 431–443.
  • [9] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahabi: “Existence results for impulsive functional and neutral functional differential inclusions with lower semicontinuous right hand side”, Electron. J. Math. Phys. Sci., Vol. 1, (2002), pp. 72–91.
  • [10] T. Cardinali, R. Servadei: “Periodic solutions of nonlinear impulsive differential inclusions with constraints”, Proc. AMS, Vol. 132, (2004), pp. 2339–2349. http://dx.doi.org/10.1090/S0002-9939-04-07343-5
  • [11] B.C. Dhage, A. Boucherif, S.K. Ntouyas: “On periodic boundary value problems of first-order perturbed impulsive differential inclusions”, Electron. J. Diff. Eqns., Vol. 84, (2004), pp. 1–9.
  • [12] M. Frigon, D. O’Regan: “Existence results for first order impulsive differential equations”, J. Math. Anal. Appl., Vol. 193, (1995), pp. 96–113. http://dx.doi.org/10.1006/jmaa.1995.1224
  • [13] S.G. Hristova, D.D. Bainov: “Existence of periodic solutions of nonlinear systems of differential equations with impulse effect”, J. Math. Anal. Appl., Vol. 125, (1987), pp. 192–202. http://dx.doi.org/10.1016/0022-247X(87)90174-0
  • [14] S. Hu, N.S. Papageorgiou: Handbook of multivalued analysis, Kluwer, Dordrecht, The Netherlands, 1997.
  • [15] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov: Theory of impulsive differential equations, World Scientific, Singapore, 1989.
  • [16] V.D. Mil’man, A.D. Myshkis: “On the stability of motion in the presence of impulses”, Siberian Math. J., Vol. 1, (1960), pp. 233–237.
  • [17] A.M. Samoilenko, N.A. Perestyuk: “Differential equations with impulse effect”, Visca Skola, Kiev, 1987. [in Russian]
  • [18] P.J. Watson: “Impulsive differential inclusions”, Nonlin. World, Vol. 4, (1997), pp. 395–402.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_BF02475964
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.