PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2004 | 2 | 4 | 527-537
Tytuł artykułu

A compound of the generalized negative binomial distribution with the generalized beta distribution

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a compound of the generalized negative binomial distribution with the generalized beta distribution. In the introductory part of the paper, we provide a chronological overview of recent developments in the compounding of distributions, including the Polish results. Then, in addition to presenting the probability function of the compound generalized negative binomial-generalized beta distribution, we present special cases as well as factorial and crude moments of some compound distributions.
Wydawca
Czasopismo
Rocznik
Tom
2
Numer
4
Strony
527-537
Opis fizyczny
Daty
wydano
2004-08-01
online
2004-08-01
Twórcy
Bibliografia
  • [1] G. Bohlmann: “Formulierung und Begründung zweier Hilfssätze der mathematischen Statistik”, Math. Ann., Vol. 74, (1913), pp. 341–409. http://dx.doi.org/10.1007/BF01456750
  • [2] M.E. Cansado: “On the compound and generalized Poisson distributions”, Ann. Math. Stat., Vol. 19, (1948), pp. 414–416.
  • [3] D.S. Dubey: “A compound Weibull distribution”, Naval Res. Logist. Quart, Vol. 15(2), (1968), pp. 179–182.
  • [4] D.S. Dubey: “Compound gamma, beta and F distributions”, Metrika, Vol. 16(1), (1970), pp. 27–31.
  • [5] W. Dyczka: “Zastosowanie składania rozkładów do wyznaczania momentów (Application of compounding of distribution to determination of moments: in Polish)”, Zeszyty Nauk. Politech. Łódzkiej- Scient. Bull. Łódź Techn. Univ., Vol. 168, (1973);Matematyka, Vol. 3, (1973), pp. 205–230.
  • [6] W. Dyczka: “A generalized negative binomial distribution as a distribution of PSD class”, Zeszyty Nauk. Politch. Łódzkiej- Scient. Bull. Łódź Techn. Univ., Vol. 272, (1978);Matematyka, Vol. 10, (1978), pp. 5–14.
  • [7] W. Feller: “On general class of “contagious”, distributions”, Ann. Math. Stat., Vol. 14, (1943), pp. 389–400.
  • [8] T. Gerstenkorn and T. Śródka: Kombinatoryka i Rachunek Prawdopodobieństwa (Combinatorics and Probability Theory; in Polish), 7th Ed., PWN, Warsaw, 1983.
  • [9] T. Gerstenkorn: “The compounding of the binomial and generalized beta distributions”, In: W. Grossmann, G.Ch. Pflug and W. Wertz (Eds.): Proc. 2 nd Pannonian Conf. on Mathem. Statistics (Tatzmannsdorf, Austria, 1981), D. Reidel Pub., Dordrecht, Holland, 1982, pp. 87–99.
  • [10] T. Gerstenkorn: “A compound of the generalized gamma distribution with the exponential one”, Bull. Soc. Sci. Letters Lodz, Vol. 43(1), (1993);Recherches sur les déformations, Vol. 16(1), (1993). pp. 5–10.
  • [11] T. Gerstenkorn: “A compound of the Pólya distribution with the beta one”, Random Oper. and Stoch. Equ., Vol. 4(2), (1996), pp. 103–110. http://dx.doi.org/10.1515/rose.1996.4.2.103
  • [12] I. Ginzel: “Die konforme Abbildung durch die Gammafunktion”, Acta Mathematica, Vol. 56, (1931), pp. 273–353.
  • [13] M. Greenwood and G.U. Yule: “An inquiry into the nature of frequency distribution representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents”, J. Roy. Stat. Soc., Vol. 83, (1920), pp. 255–279. http://dx.doi.org/10.2307/2341080
  • [14] J. Gurland: “Some interrelations among compound and generalized distributions”, Biometrika, Vol. 44, (1957), pp. 265–268. http://dx.doi.org/10.2307/2333264
  • [15] M.L. Huang and K.Y. Fung: “D compound Poisson distribution”, Statistical Papers-Statistische Hefte, Vol. 34, (1993), pp. 319–338.
  • [16] G.C. Jain and P.C. Consul: “A generalized negative binomial distribution”, SIAM J. Appl. Math, Vol. 21(4), (1971), pp. 507–513. http://dx.doi.org/10.1137/0121056
  • [17] H. Jakuszenkow: “Nowe złożenia rozkładów (New compounds of distributions; in Polish)”, Przegląd Statystyczny, Vol. 20(1), (1973) pp. 67–73.
  • [18] N.L. Johnson, S. Kotz and A. Kemp: Univariate Discrete Distributions, 2nd Ed., J. Wiley, New York, 1992.
  • [19] S.K. Katti and J. Gurland: “The Poisson-Pacal distribution”, Biometrics, Vol. 17, (1967), pp. 527–538. http://dx.doi.org/10.2307/2527853
  • [20] A. Kaufmann: Introduction à la Combinatorique en Vue des Applications, Dunod, Paris, 1968.
  • [21] O. Lundberg: On Random Processes and Their Application to Sickness and Accident Statistics, Almquist and Wiksells Boktryckeri-A. B., Uppsala, 1940.
  • [22] J. Łukaszewicz and M. Warmus: Metody Numeryczne i Graficzne (Numerical and Graphical Methods;in Polish), PWN, Warszawa, 1956.
  • [23] W. Molenaar: “Some remarks on mixtures of distributions”, Bull. Intern. Statist. Institute; 35 th Session of the Intern. Statist. Inst., Beograd, Vol. 2, (1965), pp. 764–765.
  • [24] W. Molenaar and W.R. van Zwet: “On mixtures of distributions”, Ann. Math. Stat., Vol. 37(1), (1966), pp. 281–283.
  • [25] L. Ogiński: “Zastosowanie pewnego rozkładu typu Bessela w teorii niezawodności (Application of a distribution of the Bessel type in the reliability theory; in Polish)”, Zeszyty Nauk. Politech. Łódzkiej- Scient. Bull. Łódź Techn. Univ., Vol. 324, (1979);Matematyka, Vol. 12, (1979). pp. 31–42.
  • [26] G.P. Patil, S.W. Joshi and C.R. Rao: A Dictionary and Bibliography of Discrete Distributions, Oliver and Boyd, Edinburgh, 1968.
  • [27] E.S. Pearson: “Baye’s theorem, examined in the light of experimental sampling”, Biometrika, Vol. 17, (1925), pp. 388–442. http://dx.doi.org/10.2307/2332088
  • [28] F.E. Satterthwaite: “Generalized Poisson distribution”, Ann. Math. Stat., Vol. 134, (1942), pp. 410–417.
  • [29] J.G. Seweryn: “Some probabilistic properties of Bessel distributions”, Zeszyty Nauk. Politechn. Łódzkiej- Scient. Bull. Łódź Techn. Univ., Vol. 466, (1986);Matematyka, Vol. 19, (1986), pp. 69–87.
  • [30] J.G. Skellam: “A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials”, J. Roy. Statist. Soc., Ser. B, Vol. 10(2), (1948), pp. 257–261.
  • [31] E.W. Stacy: “A generalization of the gamma distribution”, Ann. Math. Stat., Vol. 33(3), (1962), pp. 1187–1192.
  • [32] T. Śródka: “Nouvelles compositions de certaines distributions”, Bull. Soc. Sci. Lettres, Łódź, Vol. 15(5), (1964), pp. 1–11.
  • [33] T. Śródka: “Złożenie rozkładu Laplace’a z pewnym uogólnionym rozkładem gamma, Maxwella i Weibulla (Compounding of the Laplace distribution with a generalized gamma, Maxwell and Weibull distributions; in Polish)”, Zeszyty Nauk Politech. Łódzk.- Scient. Bull. Łódź Techn. Univ., Vol. 77, (1966);Włókiennictwo (Textile industry), Vol. 14, (1966), pp. 21–28.
  • [34] T. Śródka: “On some generalized Bessel-type probability distribution”, Zeszyty Nauk. Politechn. Łódzk.- Scient. Bull. Łódź Techn. Univ., Vol. 179, (1973);Matematyka, Vol. 4, (1973), pp. 5–31.
  • [35] H. Teicher: “On the mixtures of distributions”, Ann. Math. Stat., Vol. 31, (1960), pp. 55–72.
  • [36] H. Teicher: “Identifiability of mixtures”, Ann. Math. Stat., Vol. 32, (1962), pp. 244–248.
  • [37] G.E. Willmot: “A remark on the Poisson-Pascal and some other contagious distributions”, Statist. Probab. Lett., Vol. 7(3), (1989), pp. 217–220. http://dx.doi.org/10.1016/0167-7152(88)90053-3
  • [38] G. Wimmer and G. Altmann: Thesaurus of Discrete Probability Distributions, Stamm, Essen, 1999.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_BF02475961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.