PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2003 | 1 | 1 | 123-140
Tytuł artykułu

On characterization of Poisson and Jacobi structures

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids.
Wydawca
Czasopismo
Rocznik
Tom
1
Numer
1
Strony
123-140
Opis fizyczny
Daty
wydano
2003-03-01
online
2003-03-01
Twórcy
Bibliografia
  • [1] [Co] T. J. Courant: Tangent Dirac structures, J. Phys. A: Math. Gen., 23 (1990), 5153–5160. http://dx.doi.org/10.1088/0305-4470/23/22/010
  • [2] [Gr] J. Grabowski: Abstract Jacobi and Poisson structures, J. Geom. Phys., 9 (1992), 45–73. http://dx.doi.org/10.1016/0393-0440(92)90025-V
  • [3] [GL] F. Guédira, A. Lichnerowicz: Géométrie des algébres de Lie locales de Kirillov, J. Math. pures et appl., 63 (1984), 407–484.
  • [4] [GM] J. Grabowski and G. Marmo: Jacobi structures revisited, J. Phys. A: Math. Gen., 34 (2001), 10975–10990. http://dx.doi.org/10.1088/0305-4470/34/49/316
  • [5] [GM1] J. Grabowski and G. Marmo: The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen., 36 (2003), 161–181. http://dx.doi.org/10.1088/0305-4470/36/1/311
  • [6] [GU] J. Grabowski, P. Urbański: Tangent lifts of Poisson and related structures, J. Phys. A: Math. Gen., 28 (1995), 6743–6777. http://dx.doi.org/10.1088/0305-4470/28/23/024
  • [7] [GUO] J. Grabowski and P. Urbański: Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids, Ann. Global Anal. Geom. 15 (1997), 447–486. http://dx.doi.org/10.1023/A:1006519730920
  • [8] [GU1] J. Grabowski and P. Urbański: Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., 40 (1997), 195–208. http://dx.doi.org/10.1016/S0034-4877(97)85916-2
  • [9] [GU2] J. Grabowski and P. Urbański: Algebroids-general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111–141. http://dx.doi.org/10.1016/S0393-0440(99)00007-8
  • [10] [IM] D. Iglesias and J.C. Marrero: Some linear Jacobi structures on vector bundles, C.R. Acad. Sci. Paris, 331 Sér. I. (2000), 125–130.
  • [11] [IM1] D. Iglesias and J.C. Marrero: Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys., 40 (2001), 176–1999. http://dx.doi.org/10.1016/S0393-0440(01)00032-8
  • [12] [IY] S. Ishihara and K. Yano: Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York 1973.
  • [13] [KSB] Y. Kerbrat and Z. Souici-Benhammadi: Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris, Sér. I, 317 (1993), 81–86.
  • [14] [Ki] A. Kirillov: Local Lie algebras, Russian Math. Surveys, 31 (1976), 55–75. http://dx.doi.org/10.1070/RM1976v031n04ABEH001556
  • [15] [KS] Y. Kosmann-Schwarzbach: Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math., 41 (1995), 153–165. http://dx.doi.org/10.1007/BF00996111
  • [16] [KSM] Y. Kosmann-Schwarzbach and F. Magri: Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, A53 (1990), 35–81.
  • [17] [Li] A. Lichnerowicz: Les variétés de Jacobi et leurs algébres de Lie associées, J. Math. Pures Appl., 57 (1978), 453–488.
  • [18] [Ma] K. Mackenzie: Lie groupoids and Lie algebroids in differential geometry, Cambridge University Press, 1987.
  • [19] [MX] K. Mackenzie, P. Xu: Lie bialgebroids and Poisson groupoids, Duke Math. J., 73, (1994), 415–452. http://dx.doi.org/10.1215/S0012-7094-94-07318-3
  • [20] [MX1] K. Mackenzie, P. Xu: Classical lifting processes and multiplicative vector fields, Quarterly J. Math. Oxford, 49 (1998), 59–85. http://dx.doi.org/10.1093/qjmath/49.193.59
  • [21] [MMP] J. C. Marrero, J. Monterde and E. Padron: Jacobi-Nijenhuis manifolds and compatible Jacobi structures, C. R. Acad. Sci. Paris, 329, Sér. I (1999), 797–802.
  • [22] [Va] I. Vaisman: The BV-algebra of a Jacobi manifold, Ann. Polon. Math., 73 (2000), 275–290.
  • [23] [Wi] E. Witten: Supersymmetry and Morse theory, J. Diff. Geom., 17 (1982), 661–692.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_BF02475669
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.