EN
The space which is composed by embedding countably many circles in such a way into the plane that their radii are given by a null-sequence and that they all have a common tangent point is called “The Hawaiian Earrings”. The fundamental group of this space is known to be a subgroup of the inverse limit of the finitely generated free groups, and it is known to be not free. Within the recent move of trying to get hands on the algebraic invariants of non-tame (e.g. non-triangulable) spaces this space usually serves as the simplest example in this context. This paper contributes to understanding this group and corresponding phenomena by pointing out that several subgroups that are constructed according to similar schemes partially turn out to be free and not to be free. Amongst them is a countable non-free subgroup, and an uncountable free subgroup that is not contained in two other free subgroups that have recently been found. This group, although free, contains infinitely huge “virtual powers”, i.e. elements of the fundamental group of that kind that are usually used in proofs that this fundamental group is not free, and, although this group contains all homotopy classes of paths that are associated with a single loop of the Hawaiian Earrings, this system of ‘natural generators’ can be proven to be not contained in any free basis of this free group.