[1] W.J. Blok and D.Pigozzi: Algebraizable logics, Memoirs of the American Math. Soc., Vol. 396, Providence, Rhode Island, 1989.
[2] W.A. Dudek: “The number of subalgebras of finite BCC-algebras”, Bull. of the Inst. of Math., Academia Sinica, Vol. 20(2), (1992), pp. 129–135.
[3] W.A. Dudek: “On subalgebras in Hilbert algebras”, Novi Sad J. Math., Vol. 29(2) (1999), pp. 181–192.
[4] W.A. Dudek: “Subalgebras in finite BCC-algebras, Bull. of the Inst. of Math., Academia Sinica, Vol. 28, (2000), pp. 201–206.
[5] I. Chajda and R. Halaš: “Pre-logics BCC-algebras”, Math. Slovaca, Vol. 52(2), (2002), pp. 157–175.
[6] R. Halas: “BCC-algebras inherited from posets”,Multiple Valued Logic, Vol.8, (2002), pp.223–235. http://dx.doi.org/10.1080/10236620215290
[7] R. Halaš and J. Ort: “Standard QBCC-algebras”, Demonstratio Math., Vol. 36(1), (2003), pp. 1–10.
[8] R. Halaš and J. Ort: “QBCC-algebras inherited from qosets”, Math. Slovaca, Vol. 53(4), (2003), pp. 331–340.
[9] Y. Imai and K. Iséki: “On axiomatic system of propositional calculi”, XIV. Proc. Japan Acad., Vol. 42, (1966), pp. 19–22. http://dx.doi.org/10.3792/pja/1195522169
[10] Y. Komori: “The class of BCC-algebras is not a variety”, Math. Japon., Vol. 29, (1984), pp. 391–394.
[11] A. Wroński: “An algebraic motivation for BCK-algebras”, Math. Japon., Vol. 30, (1985), pp. 183–193.
[12] A. Wroński: “BCK-algebras do not form a variety”, Math. Japon., Vol. 28, (1983), pp. 211–213.