PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2004 | 2 | 3 | 388-398
Tytuł artykułu

Lattice valued intuitionistic fuzzy sets

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a new definition of a lattice valued intuitionistic fuzzy set (LIFS) is introduced, in an attempt to overcome the disadvantages of earlier definitions. Some properties of this kind of fuzzy sets and their basic operations are given. The theorem of synthesis is proved: For every two families of subsets of a set satisfying certain conditions, there is an lattice valued intuitionistic fuzzy set for which these are families of level sets.
Wydawca
Czasopismo
Rocznik
Tom
2
Numer
3
Strony
388-398
Opis fizyczny
Daty
wydano
2004-06-01
online
2004-06-01
Twórcy
Bibliografia
  • [1] K. Atanassov: “Intuitionistic fuzzy sets”,Fuzzy Sets and Systems, Vol.20, (1986),pp.87–96. http://dx.doi.org/10.1016/S0165-0114(86)80034-3
  • [2] K. Atanassov, S. Stoeva: “IntuitionisticL-fuzzy sets”,Cybernetics and Systems Research, Vol. 2, R. Trappl (ed.) Etsevier Science Publishers B.V., North-Holland, (1984), pp. 539–540.
  • [3] K. Atanassov:Intuitionistic fuzzy sets, Theory and Applications, Physica-Verlag, Springer Company, Heilderberg, New York, 1999.
  • [4] B. A. Davey, H.A. Priestly.Introduction to lattices and order, Cambridge University Press, 1990.
  • [5] T. Gerstenkorn, J. Mańko: “Bifuzzy probabilistic sets”Fuzzy Sets and Systems,Vol.71, (1995),pp.207–214. http://dx.doi.org/10.1016/0165-0114(94)00254-5
  • [6] T. Gerstenkorn, J. Mańko: “Bifuzzy probability of intuitionistic fuzzy sets”,Notes on Intuitionistic Fuzzy Sets, Vol. 4 (1998), pp. 8–14.
  • [7] T. Gerstenkorn, J. Mańko: “On probability and independence in intuitionistic fuzzy set theory”,Notes on Intuitionistic Fuzzy Sets, Vol. 1, (1995), pp. 36–39.
  • [8] T. Gerstenkorn, A. Tepavĉević: “Lattice valued bifuzzy sets, New Logic for the New Economy”, VIII SIGEF Congress Proceedings, ed. by G. Zollo, pp. 65–68.
  • [9] B. Ŝeŝelja, A. Tepavĉević: “Representation of lattices by fuzzy sets”,Information Sciences, Vol. 79, (1993), pp. 171–180.
  • [10] B. Ŝeŝelja, A. Tepavĉević, G. Vojvodić: “L-fuzzy sets and codes”,Fuzzy sets and systems, Vol. 53, (1993), pp. 217–222. http://dx.doi.org/10.1016/0165-0114(93)90175-H
  • [11] B. Ŝeŝelja, A. Tepavĉević: “Completion of ordered structures by cuts of fuzzy sets, an overview”,Fuzzy Sets and Systems,Vol.136 (2003),pp.1–19. http://dx.doi.org/10.1016/S0165-0114(02)00365-2
  • [12] B. Ŝeŝelja, A. Tepavĉević: “Representing ordered structures by fuzzy sets, an overview”,Fuzzy Sets and Systems,Vol.136, (2003),pp.21–39. http://dx.doi.org/10.1016/S0165-0114(02)00366-4
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_BF02475236
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.