EN
In this paper, we first discuss some properties of SKC mappings in the context of Busemann spaces and obtain a demiclosedness principle.We then prove the existence and approximation results for SKC mappings in a uniformly convex Busemann space. At the end, we give a numerical example in support of our main result. This example also shows that our iterative process is faster than some well-known iterative processes even for SKC mappings. Our results are certainly more general than many results in the contemporary literature.