Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 1 | 1 |

Tytuł artykułu

Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper we develop analytical solutions for the Helmholtz and Laplace equations involving local fractional derivative operators. We implement the local fractional decomposition method (LFDM) for finding the exact solutions. The iteration procedure is based upon the local fractional derivative sense. The numerical results, whichwe present in this paper, show that the methodology used provides an efficient and simple tool for solving fractal phenomena arising in mathematical physics and engineering. Several illustrative examples are also provided.

Wydawca

Rocznik

Tom

1

Numer

1

Opis fizyczny

Daty

otrzymano
2015-08-08
zaakceptowano
2015-09-29
online
2015-11-11

Twórcy

  • Department of Mathematics, Faculty of Sciences, HITEC University, Taxila, Pakistan
  • Department of Mathematics, Faculty of Sciences, HITEC University, Taxila, Pakistan
  • Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada and China Medical University, Taichung 40402, Taiwan, Republic of China
  • China University of Mining and Technology, Department of Mathematics and Mechanics, Xuzhou, Jiangsu 221008, People’s Republic of China

Bibliografia

  • [1] K.M. Kolwankar, A.D. Gangal, Phys. Rev. Lett. 80, 214 (1998).
  • [2] A. Carpinteri, B. Chiaia, P. Cornetti, Comput. Method. Appl. Mech. Engrg. 191, 3 (2001).
  • [3] F.B. Adda, J. Cresson, J. Math. Anal. Appl. 263, 721 (2001).
  • [4] A. Babakhani, V.G. Daftardar, J. Math. Anal. Appl. 270, 66 (2002).
  • [5] G. Jumarie, Appl. Math. Lett. 22, 378 (2009). [Crossref]
  • [6] W. Chen, H. Sun, X. Zhang, D. Korosak, Comput. Math. Appl. 59, 1754 (2010).
  • [7] X.-J. Yang, Local Fractional Functional Analysis and its Applications (Asian Academic Publisher, Hong Kong, PRC, 2011).
  • [8] X.-J. Yang, Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, USA, 2012).
  • [9] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of Fractional Differential Equations (Elsevier/North- Holloand Science Publishers, Amsterdam, The Netherlands, 2006).
  • [10] X.-J. Yang, D. Baleanu, Therm. Sci. 17, 625 (2013). [Crossref]
  • [11] X.-J. Yang, H.M. Srivastava, J.-H. He, D. Baleanu, Phys. Lett. A. 377, 1696 (2013).
  • [12] J. Ahmad, S.T. Mohyud-Din, Proc. Pakistan Acad. Sci. 52, 71 (2015).
  • [13] Y.-J. Yang, D. Baleanu, X.J. Yang, Abstr. Appl. Anal. 2013, Art. ID 202650 (2013).
  • [14] A.K. Golmankhaneh, V. Fazlollahi, D. Baleanu, Rom. Rep. Phys. 65, 93 (2013).
  • [15] Y.-J. Hao, H.M. Srivastava, H. Jafari, X.-J. Yang, Adv. Math. Phys. 2013, 754248 (2013).
  • [16] J.-H. He, Internat. J. Non-Linear Mech. 34, 708 (1999).
  • [17] Y. Khan, S.T. Mohyud-Din, Internat. J. Nonlinear Sci. Numer. Simulat. 12, 1103, (2010).
  • [18] J. Hristov, Therm. Sci. 14, 291 (2010). [Crossref]
  • [19] J. Ahmad, S.T. Mohyud-Din, Plus One. 9, Article ID e109127 (2014). [Crossref]
  • [20] H. Jafari, S. Seifi, Commun. Nonlinear Sci. 14, 2006 (2009). [Crossref]
  • [21] S. Zhang, H.-Q. Zhang, Phys. Lett. A, 375, 1069 (2011).
  • [22] Y. Khan, N. Faraz, A. Yildirim, Q.-B.Wu, Comput.Math. Appl. 62, 2273 (2011). [Crossref]
  • [23] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, (World Scientific, Boston, USA, 2012).
  • [24] C. Li, Y. Wang, Comput. Math. Appl. 57, 1672 (2009). [Crossref]
  • [25] H. Jafari, V.G. Daftardar, J. Comput. Appl.Math. 196, 644 (2006).
  • [26] S. Momani, Z. Odibat, Appl. Math. Comput. 177, 488 (2006).
  • [27] S.S. Ray, R.K. Bera, Appl. Math. Comput. 174, 329 (2006).
  • [28] Q. Wang, Appl. Math. Comput. 182, 1048 (2006).
  • [29] H. Jafari, V.G. Daftardar, Appl. Math. Comput. 180, 488 (2006).
  • [30] M. Safari, D.D. Ganji, M. Moslemi, Comput.Math. Appl. 58, 2091 (2009). [Crossref]
  • [31] M. El-Shahed, J. Fract. Calc. 24, 23 (2003).
  • [32] X.-J. Yang, D. Baleanu, W.-P. Zhong, Proc. Roman. Acad. Ser. A, 14, 127 (2013).
  • [33] X.-J. Yang, D. Baleanu, M. P. Lazareviæ, M. S. Cajiæ, Therm. Sci. 2013, DOI: 10.2298/TSCI130717103Y, (2013). [Crossref]
  • [34] A.-M. Yang, Y.-Z. Zhang, Y. Long, Therm. Sci. 17, 707 (2013). [Crossref]
  • [35] C.-F. Liu, S.-S. Kong, S.-J. Yuan, Therm. Sci. 17, 715 (2013). [Crossref]
  • [36] J. Ahmad, S.T. Mohyud-Din, Life Sci. J. 10, 210 (2013).
  • [37] X.-J. Yang, Y.-D. Zhang, Adv. Inform. Tech. Managem. 1, 158 (2012).
  • [38] X.-J. Yang, Progr. Nonlinear Sci. 4, 1 (2011).
  • [39] M. Liao, X.-J. Yang, Q. Yan, A New viewpoint to Fourier analysis in fractal space (Advances in Applied mathematics and Approximation Theory, Springer, 397, 2013).
  • [40] A.-M. Yang, Z.-S. Chen, H.M. Srivastava, X.-J. Yang, Abstr. Appl. Anal. 2013, Article ID 259125 (2013).
  • [41] Y.-J. Yang, D. Baleanu, X.-J. Yang, Abstr. Appl. Anal. 2013, Article ID 202650 (2013).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_wwfaa-2015-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.