EN
Discrete dynamical systems are given by the pair (X, f ) where X is a compact metric space and f : X → X a continuous maps. During years, a long list of results have appeared to precise and understand what is the complexity of the systems. Among them, one of the most popular is that of topological entropy. In modern applications other conditions on X and f have been considered. For example X can be non-compact or f can be discontinuous (only in a finite number of points and with bounded jumps on the values of f or even non-bounded jumps). Such systems are interesting from theoretical point of view in Topological Dynamics and appear frequently in applied sciences such as Electronics and Control Theory. In this paper we are dealing mainly with the original ideas of entropy in Thermodinamics and their evolution until the appearing in the twenty century of the notions of Shannon and Kolmogorov-Sinai entropies and the subsequent topological entropy. In turn such notions have to evolve to other recent situations where it is necessary to give some extended versions of them adapted to the new problems.