PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | 4 | 1 | 73-79
Tytuł artykułu

Orthogonal diagonalization for complex skew-persymmetric anti-tridiagonal Hankel matrices

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we obtain an eigenvalue decomposition for any complex skew-persymmetric anti-tridiagonal Hankel matrix where the eigenvector matrix is orthogonal.
Wydawca
Czasopismo
Rocznik
Tom
4
Numer
1
Strony
73-79
Opis fizyczny
Daty
wydano
2016-01-01
otrzymano
2015-05-13
zaakceptowano
2015-11-12
online
2015-12-16
Twórcy
  • Ceit, Manuel Lardizábal 15, 20018 San Sebastián, Spain and Tecnun (University of Navarra), Manuel Lardizábal 13, 20018 San Sebastián, Spain, jgutierrez@ceit.es
  • ISSA (University of Navarra), Ediffcio Amigos, Campus Universitario, 31009 Pamplona, Spain and Tecnun (University of Navarra), Manuel Lardizábal 13, 20018 San Sebastián, Spain, mzarraga@tecnun.es
Bibliografia
  • [1] J. Gutiérrez-Gutiérrez, Powers of real persymmetric anti-tridiagonal matrices with constant anti-diagonals, Applied Mathematics and Computation 206 (2008) 919-924.[WoS]
  • [2] J. Gutiérrez-Gutiérrez, Eigenvalue decomposition for persymmetric Hankel matrices with at most three non-zero anti-diagonals, Applied Mathematics and Computation 234 (2014) 333-338.[WoS]
  • [3] M. Akbulak, C. M. da Fonseca, F. Yılmaz, The eigenvalues of a family of persymmetric anti-tridiagonal 2-Hankel matrices, Applied Mathematics and Computation 225 (2013) 352-357.[WoS]
  • [4] J. Rimas, On computing of arbitrary integer powers of even order anti-tridiagonal matrices with zeros in main skew diagonal and elements 1, 1, 1, ..., 1; −1, −1, −1, ..., −1 in neighbouring diagonals, Applied Mathematics and Computation 204 (2008) 754-763.[WoS]
  • [5] J. Rimas, On computing of arbitrary positive integer powers of odd order anti-tridiagonal matrices with zeros in main skew diagonal and elements 1, 1, 1, ..., 1; −1, −1, −1, ..., −1 in neighbouring diagonals, Applied Mathematics and Computation 210 (2009) 64-71.[WoS]
  • [6] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.[WoS]
  • [7] P. Lancaster, M. Tismenetsky, The Theory of Matrices, Academic Press, 1985.
  • [8] J. Gutiérrez-Gutiérrez, Powers of complex persymmetric or skew-persymmetric anti-tridiagonal matrices with constant anti-diagonals, Applied Mathematics and Computation 217 (2011) 6125-6132.[WoS]
  • [9] J. Lita da Silva, Integer powers of anti-tridiagonal matrices of the form antitridiagn (a, c, −a), a, c ∈ ℂ, International Journal of Computer Mathematics (2015) DOI: 10.1080/00207160.2015.1073721.[Crossref]
  • [10] J. Gutiérrez-Gutiérrez, Powers of tridiagonal matrices with constant diagonals, Applied Mathematics and Computation 206 (2008) 885-891.[WoS]
  • [11] T. M. Apostol, Calculus, Vol. 1, John Wiley & Sons, 1967.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_spma-2016-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.