Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 4 | 1 | 46-55

Tytuł artykułu

The Smith normal form of product distance matrices

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let G = (V, E) be a connected graph with 2-connected blocks H1, H2, . . . , Hr. Motivated by the exponential distance matrix, Bapat and Sivasubramanian in [4] defined its product distance matrix DG and showed that det DG only depends on det DHi for 1 ≤ i ≤ r and not on the manner in which its blocks are connected. In this work, when distances are symmetric, we generalize this result to the Smith Normal Form of DG and give an explicit formula for the invariant factors of DG.

Słowa kluczowe

Wydawca

Czasopismo

Rocznik

Tom

4

Numer

1

Strony

46-55

Opis fizyczny

Daty

wydano
2016-01-01
otrzymano
2015-06-15
zaakceptowano
2015-11-10
online
2015-12-16

Twórcy

autor
  • Stat-Math Unit, Indian Statistical Institute, Delhi, 7-SJSS Marg, New Delhi 110 016, India
  • Department of Mathematics, Indian Institute of Technology, Bombay, Mumbai 400 076, India

Bibliografia

  • [1] Bapat R. B. Resistance matrix and q-laplacian of a unicyclic graph. In Ramanujan Mathematical Society Lecture Notes Series, 7, Proceedings of ICDM 2006, Ed. R. Balakrishnan and C.E. Veni Madhavan (2008), pp. 63–72.
  • [2] Bapat R. B., Lal A. K., Pati S. A q-analogue of the distance matrix of a tree. Linear Algebra and its Applications 416 (2006), 799–814.[WoS]
  • [3] Bapat R. B., Raghavan T. E. S. Nonnegative Matrices and Applications. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1997.
  • [4] Bapat R. B., Sivasubramanian S. Product Distance Matrix of a Graph and Squared Distance Matrix of a Tree. Applicable Analysis and Discrete Mathematics 7 (2013), 285–301.
  • [5] Chebotarev P. A class of graph-geodetic distances generalizing the shortest-path and the resistance distances. Discrete Applied Math 159, Issue 5, (2011), 295–302. [2][WoS]
  • [6] Chebotarev P. The graph bottleneck identity. Advances in Applied Mathematics 47, Issue 3, (2011), 403–413.[WoS]
  • [7] Dealba L. M. Determinants and Eigenvalues. In Handbook of Linear Algebra, L. Hogben, Ed. Chapman & Hall CRC Press, 2007, ch. 4.
  • [8] Developers T. S. Sage Mathematics Software (Version 3.1.1), 2008. .
  • [9] Klein D. J., Randić M. Resistance distance. Journal of Mathematical Chemistry 12, Issue 1, (1993), 81–95.[WoS]
  • [10] Newman M. Integral Matrices. Academic Press, 1972.
  • [11] Shiu W. C. Invariant factors of graphs associated with hyperplane arrangements. Discrete Mathematics 288 (2004), 135–148.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_spma-2016-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.