Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 4 | 1 |
Tytuł artykułu

Acoustomagnetoelectric Effect in Graphene Nanoribbon in the Presence of External Electric and Magnetic Fields

Treść / Zawartość
Warianty tytułu
Języki publikacji
Acoustomagnetoelectric Effect (AME) in Graphene Nanoribbon (GNR) in the presence of an external electric and magnetic fields was studied using the Boltzmann kinetic equation. On open circuit, the Surface Acoustomagnetoelectric field (ESAME) in GNR was obtained in the region ql >> 1, for energy dispersion "(p) near the Fermi level. The dependence of ESAME on the dimensional factor (ɳ), the sub-band index (pi), and the width (N) of GNR were analyzed numerically. For ESAME versus ɳ, a non-linear graph was obtained. From the graph, at ɳ < 0.62, the obtained graph qualitatively agreed with that experimentally observed in graphite. However at ɳ > 0.62, the ⃗ESAME falls rapidly to a minimum value. We observed that in GNR, the maximum ⃗ESAME was obtained at magnetic field H = 3.2Am−1. The graphs obtainedwere modulated by varying the subband index pi with an inversion observed when pi = 6. The dependence of ESAME on the width N for various pi was also studied where, ⃗ESAME decreases for increase in pi. To enhanced the understanding of ESAME on the N and ɳ, a 3D graph was plotted. This study is relevant for investigating the properties of GNR.
Opis fizyczny
  • [1] Mensah, S. Y. and F. K. A. Allotey, AE effect in semiconductor SL, J. Phys: Condens.Matter., Vol. 6, 6783, (1994). [Crossref]
  • [2] Mensah, S. Y. and F. K. A. Allotey, Nonlinear AE effect in semiconductor SL, J. Phys.: Condens. Matter. Vol. 12, 5225, (2000). [Crossref]
  • [3] Mensah, S. Y., Allotey, F. K. A., and Adjepong, S. K., Acoutomagnetoelectric effect in a superlattice, J. Phys. Condens. Matter 8 1235-1239, (1996). [Crossref]
  • [4] Nghia, N. V., Bau, N. Q., Vuong, D. Q., Calculation of the Acoustomagnetoelectric Field in Rectangular Quantum Wire with an Infinite Potential in the Presence of an External Magnetic Field, PIERS Proceedings, Kuala Lumpur, MALAYSIA 772–777, (2012).
  • [5] Reulet, B., Kasumov, A. Yu., Kociak, M., Deblock, R., Khodos I. I., Gorbatov, Yu. B., Volkov, V. T., Journet, C., Bouchiat, H., Acoustoelectric effect in carbon nanotubes, Phys. Review Letters, Vol. 85, No. 13, (2000).
  • [6] Mensah, N. G., Acoustomagnetoelectric effect in degenerate Semiconductor with non-parabolic energy dispersion law, arXiv.cond-mat.1002.3351, (2006).
  • [7] Zhang, S. H., Xu, W., Absorption of Surface acoustic waves by graphene, AIP Advances, 1, 022146 (2011).
  • [8] Maao, F. A., Galperin Y., Phys.: Rev. B 56 (1997) 4028.
  • [9] Mensah, S. Y., and Kangah, G. K., J. Phy.: Condens. Matter. 3, (1991) 4105.
  • [10] Grinberg, A. A., and Kramer, N. I., Sov. Phys., Doklady (1965) Vol. 9., No. 7552.
  • [11] Yamada, T., J. Phys. Soc. Japan (1965) 20 1424.
  • [12] Shmelev, G. M., Nguyen Quoc Anh, Tsurkan, G. I., and Mensah S. Y., currentless Amplification of hypersound in a planar configuration by inelastic scattering of electrons, phys. stat. sol. (b) 121, 209, (1984).
  • [13] Bau, N. Q., N. V. Nhan, and N. V. Nghia, The dependence of the acoustomagnetoelectric current on the parameters of a cylindrical quantum wire with an infinite potential in the presence of an external magnetic field, PIERS Proceedings, 14521456, Suzhou, China, Sep. 1216, 2011.
  • [14] Shmelev, G. M., G. I. Tsurkan, and N. Q. Anh, Photostimulated planar acoustomagnetoelectric effect in semiconductors, Phys. Stat. Sol., Vol. 121, No. 1, 97102, 1984.
  • [15] Kogami, M., and Tanaka, SH.,J. Phys. Soc. Japan 30, 775 (1971).
  • [16] Ohashi, F., Kimura, K., and Sugihara, K., Physica 105B, 103 (1981).
  • [17] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666, (2004).
  • [18] Huaixiu Z., Zhengfei W., Tao L., Qinwei S., and Jie C., Analytical study of electronic structure in Armchair Graphene Nanoribbons, arXiv.cond-mat.0612378v2, (2006).
  • [19] Son Y. W., Cohen M. L., and Louie S. G. Energy Gaps in Graphene Nanoribbons. Physical Review Letters 97 (21), (2006).
  • [20] Mahdi M., Hamed N., Mahdi P., Morteza F., and Hans K.,Analytical models of approximate for wave functions and energy dispersion in zigzag graphene nanoribbons, J. Applied Physics 111, 074318, (2012). [WoS]
  • [21] Yu-Ming Lin, Vasili Perebeinos, Zhihong Chen, and Phaedon Avouris, Electrical observation of sub band formation in graphene nanoribbon, Phy. Review B 78, 161409 (2008).
  • [22] Dompreh, K. A., Mensah, S. Y., Abukari, S. S., Sam, F., and Mensah, N. G.,Amplification of acoustic waves in Armchair graphene nanoribbon in the presence of external electric and magnetic field. arXiv:cond-mat. 1101436, (2014).
  • [23] Hone, J., Batlogg, B., Benes, Z., Johnson, A. T., Fischer, J. E. , Science 289, 1730 (2000) 279, 280.
  • [24] Ahmadi, M. T., Johari, Z., Amin, A. N., Fallapour, A. H., Ismail, R.,Graphene Nanoribbon ConductanceModel in Parabolic Band Structure, J. of Nanomaterials, 753738, (2010). [WoS]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.