Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 4 | 1 |
Tytuł artykułu

Hybrid fluid-quantum coupling for the simulation of the transport of partially quantized particles in a DG-MOSFET

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper is devoted to numerical simulations of electronic transport in nanoscale semiconductor devices forwhich charged carriers are extremely confined in one direction. In such devices, like DG-MOSFETs, the subband decomposition method is used to reduce the dimensionality of the problem. In the transversal direction electrons are confined and described by a statistical mixture of eigenstates of the Schrödinger operator. In the longitudinal direction, the device is decomposed into a quantum zone (where quantum effects are expected to be large) and a classical zone (where they are negligible). In the largely doped source and drain regions of a DG-MOSFET, the transport is expected to be highly collisional; then a classical transport equation in diffusive regime coupled with the subband decomposition method is used for the modeling, as proposed in N. Ben Abdallah et al. (2006, Proc. Edind. Math. Soc. [7]). In the quantum region, the purely ballistic model presented in Polizzi et al. (2005, J. Comp. Phys. [25]) is used. This work is devoted to the hybrid coupling between these two regions through connection conditions at the interfaces. These conditions have been obtained in order to verify the continuity of the current. A numerical simulation for a DG-MOSFET, with comparison with the classical and quantum model, is provided to illustrate our approach.
  • [1] M. Baro, N. Ben Abdallah, P. Degond, A. El Ayyadi, A 1D coupled Schrödinger drift-diffusion model including collisions, J. Comp.Phys 203 (2005), 129–153.
  • [2] G. Bastard, Wave mechanics applied to semiconductor heterostructures, Les éditions de Physique (1996)
  • [3] N. Ben Abdallah, A Hybrid Kinetic-quantum model for stationary electron transport, J. Stat. Phys. 90 no 3-4 (1998), 627–662.[Crossref]
  • [4] N. Ben Abdallah, On a multidimensional Schrödinger-Poisson scattering model for the semiconductors, J. Math. Phys. 41 no3-4 (2000), 4241–4261.[Crossref]
  • [5] N. Ben Abdallah, M. J. Cáceres, J. A. Carrillo, F. Vecil, A deterministic solver for a hybrid quantum-classical transport model innanoMOSFETs, J. Comput. Phys. 228 (2009), no. 17, 6553–6571.[WoS]
  • [6] N. Ben Abdallah, F. Méhats, C. Negulescu, Adiabatic quantum-fluid transport models, Commun. Math. Sci. 4 (2006), no. 3,621–650.
  • [7] N. Ben Abdallah, F. Méhats, N. Vauchelet, Diffusive transport of partially quantized particles : existence uniqueness and longtime behaviour, Proc. Edinb. Math. Soc. (2006) 49, 513–549.
  • [8] N. Ben Abdallah, M. Mouis, C. Negulescu, An accelerated algorithm for 2D simulations of the quantum ballistic transport innanoscale MOSFETs, J. Comput. Phys. 225 (2007), no. 1, 74–99.
  • [9] N. Ben Abdallah,O. Pinaud, Multiscale simulation of transport in an open quantum system: resonances andWKB interpolation,J. Comput. Phys., 213 (1) (2006), 288–310.
  • [10] N. Ben Abdallah, S. Tang, On hybrid quantum-classical transport models, Math. Meth. Appl. Sci. 27 (2004), 643–667.[Crossref]
  • [11] F. Brezzi, L.D. Marini, P. Pietra, Méthodes d’éléments finis mixtes et schéma de Scharfetter-Gummel, C.R. Acad. Sci. Paris Sér.I, 305 (1987), 599–604.
  • [12] J.-P. Colinge, FinFETs and Other Multi-Gate Transistors, first ed., Springer Publishing Company, Incorporated, 2007.
  • [13] J. H. Davies, The Physics of Low Dimensional Semiconductors, Cambridge Univ. Press, Cambridge (1998)
  • [14] P. Degond, A. El Ayyadi, A coupled Schrödinger Drif-Diffusion model for Quantum semiconductor device simulations, J. Comp.Phys. 181 (2002), 222–259.
  • [15] International technology roadmap for semiconductor industry. URL:
  • [16] D. K. Ferry, S. M. Goodnick, Transport in Nanostructures. Cambridge Univ. Press, Cambridge (1997)
  • [17] C. Jourdana, P. Pietra, A hybrid classical-quantum transport model for the simulation of Carbon Nanotube transistors, SIAM J.Sci. Comput., 36 (2014), no. 3, B486–B507.[WoS]
  • [18] C. Jourdana, P. Pietra, N. Vauchelet, A classical-quantum coupling strategy for a hierarchy of one dimensional models forsemiconductors, submitted
  • [19] A. Jüngel, Transport equations for semiconductors. Lecture Notes in Physics, 773. Springer-Verlag, Berlin, 2009.
  • [20] C.S. Lent, D.J. Kirkner, The quantum transmitting boundary method, J. Appl. Phys., 67 (1990), pp. 6353–6359.
  • [21] P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor equations, Springer-Verlag, Vienna, 1990.
  • [22] C. Negulescu, Small coherence length limit for a two dimensional quantum transport model, Asymptotic Analysis 49, no. 3-4(2006), 295–329.
  • [23] P. Pietra, N. Vauchelet, Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET, J. Comput.Elec. (2008) 7:52–65.[Crossref]
  • [24] P. Pietra, N. Vauchelet, Numerical simulations of an energy-transport model for partially quantized particles, Commun. Math.Sci. 12 (2014), no. 1, 99–123.
  • [25] E. Polizzi, N. Ben Abdallah, Subband decomposition approach for the simulation of quantum electron transport in nanostructures,J. Comp. Phys. 202 (2005), 150–180.
  • [26] F. Poupaud,Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers,AsymptoticAnalysis 4 (1991), 293–317.
  • [27] D.L. Scharfetter, H.K. Gummel, Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron Devices ED-16(1969), 64–77.[Crossref]
  • [28] N. Vauchelet, Diffusive transport of partially quantized particles : LlogL solutions, Math. Models Methods Appl. Sci. (2008),Vol 18 no 4, 489–510.[WoS][Crossref]
  • [29] N. Vauchelet, Diffusive limit of a two dimensional kinetic system of partially quantized particles, J. Stat. Phys. (2010) 139,882–914.[WoS]
  • [30] F. Vecil, J. M. Mantas, M. J. Cáceres, C. Sampedro, A. Godoy, F. Gámiz, A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: comparison with Monte-Carlo, Comput. Math. Appl. 67 (2014), no. 9,1703–1721.[WoS]
  • [31] R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom, Simulating quantum transport in nanoscale transistor : Real versus modespaceapproaches, J. Appl. Phys 92 (2002), n 7, 3730–3729.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.