PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 4 | 1 | 78-97
Tytuł artykułu

Non-exponential and polynomial stability results of a Bresse system with one infinite memory in the vertical displacement

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The asymptotic stability of one-dimensional linear Bresse systems under infinite memories was obtained by Guesmia and Kafini [10] (three infinite memories), Guesmia and Kirane [11] (two infinite memories), Guesmia [9] (one infinite memory acting on the longitudinal displacement) and De Lima Santos et al. [6] (one infinite memory acting on the shear angle displacement). When the kernel functions have an exponential decay at infinity, the obtained stability estimates in these papers lead to the exponential stability of the system if the speeds ofwave propagations are the same, and to the polynomial one with decay rate [...] otherwise. The subject of this paper is to study the case where only one infinite memory is considered and it is acting on the vertical displacement. As far as we know, this case has never studied before in the literature. We show that this case is deeply different from the previous ones cited above by proving that the exponential stability does not hold even if the speeds of wave propagations are the same and the kernel function has an exponential decay at infinity. Moreover, we prove that the system is still stable at least polynomially where the decay rate depends on the smoothness of the initial data. For classical solutions, this decay rate is arbitrarily close to [...] . The proof is based on a combination of the energy method and the frequency domain approach to overcome the new mathematical difficulties generated by our system.
Wydawca
Rocznik
Tom
4
Numer
1
Strony
78-97
Opis fizyczny
Daty
wydano
2017-10-26
otrzymano
2017-09-14
zaakceptowano
2017-10-07
online
2017-11-07
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_msds-2017-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.