Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 3 | 1 |

Tytuł artykułu

Fast and Robust Orientation of Cryo-Electron Microscopy Images

Treść / Zawartość

Warianty tytułu

Języki publikacji



We present an efficient and reliable algorithm for determining the orientations of noisy images obtained fromprojections of a three-dimensional object. Based on the linear relationship among the common line vectors in one image plane, we construct a sparse matrix, and show that the coordinates of the common line vectors are the eigenvectors of the matrix with respect to the eigenvalue 1. The projection directions and in-plane rotation angles can be determined fromthese coordinates. A robust computation method of common lines in the real space using aweighted cross-correlation function is proposed to increase the robustness of the algorithm against the noise. A small number of good leading images, which have the maximal dissimilarity, are used to increase the reliability of orientations and improve the efficiency for determining the orientations of all the images. Numerical experiments show that the proposed algorithm is effective and efficient.







Opis fizyczny




  • LSEC, Institute of Computational Mathematics, Academy of Mathematics and
    System Sciences, Chinese Academy of Sciences, Beijing 100190, China
  • LSEC, Institute of Computational Mathematics, Academy of Mathematics and
    System Sciences, Chinese Academy of Sciences, Beijing 100190, China
  • LSEC, Institute of Computational Mathematics, Academy of Mathematics and
    System Sciences, Chinese Academy of Sciences, Beijing 100190, China
  • LSEC, Institute of Computational Mathematics, Academy of Mathematics and
    System Sciences, Chinese Academy of Sciences, Beijing 100190, China


  • [1] T. S. Baker. Chen and R. H. Cheng. A Model-Based Approach for Determining Orientations of Biological Macromolecules Imaged by Cryoelectron Microscopy. Journal of Structural Biology, 116(1):120-130, 1996.
  • [2] C. Chen and G. Xu. Gradient-flow-based semi-implicit finite-element method and its convergence analysis for image reconstruction. Inverse Problems, 28(3):035006, 2012. [WoS][Crossref]
  • [3] R. A. Crowther, D. J. DeRosier, and A. Klug. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proceedings of the Royal Society of London. Series A,Mathematical and Physical Sciences, 317(1530):319–340, 1970.
  • [4] R. A. Crowther. Procedures for Three-Dimensional Reconstruction of Spherical Viruses by Fourier Synthesis from Electron Micrographs. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 261(837):221–228, 1971.
  • [5] S. D. Fuller, S. J Butcher, R. H. Cheng, and T. S. Baker. Three-Dimensional Reconstruction of Icosahedral Particles-The Uncommon Line. J. Struct. Biol., 116:48–55, 1996.
  • [6] J. Frank. Three-Dimensional ElectronMicroscopy ofMacromolecular Assemblies: Visualization of BiologicalMolecules in Their Native State. Oxford, 2006.
  • [7] Frank.J.(Ed.). Electron Tomography Methods for Three-dimensional Visualization of Structures in the cell. Springer, New York.
  • [8] G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University Press, 1996.
  • [9] A. Gopinath, G. Xu, D. Ress, O. Oktem, S. Subramaniam, and C. Bajaj. Shape-based Regularization of Electron Tomographic Reconstruction. IEEE Trans Med Imaging, 31(12):2241–2252, 2012.
  • [10] M. Van Heel. Angular reconstitution: a posteriori assignment of projection directions for 3d reconstruction. Ultramicroscopy, 21(2):111–124, 1987. [Crossref]
  • [11] M. Li, G. Xu, C. O. S. Sorzano, F. Sun, and C. L. Bajaj. Single-Particle Reconstruction Using L2-Gradient Flow. Journal of Structural Biology, 176:259–267, 2011. [WoS]
  • [12] S. J. Ludtke, P. R. Baldwin, and W. Chiu. EMAN: semiautomated software for highresolution single-particle reconstructions. Journal of Structural Biology, 128(1):82-97, 1999.
  • [13] F. Natterer. The Mathematics of Computerized Tomography. SIAM: Society for Industrial and Applied Mathematics, 2001.
  • [14] F. Natterer and F. Wübbeling. Mathematical Methods in Image Reconstruction. SIAM, 2001.
  • [15] P. A. Penczek, R. A. Grasucci, and J. Frank. The ribosome at improved resolution: New techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy, 53:251–270, 1994.
  • [16] L. Piegl and W. Tiller. The NURBS Book. Springer, 1997.
  • [17] M. Radermacher. Three-dimensional reconstruction from random projections–orientational alignment via Radon transforms. Ultramicroscopy, 53:121–136, 1994.
  • [18] M. Radermacher. The three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electron Microsc. Tech., 9:359–394, 1988. [Crossref]
  • [19] P. B. Rosenthal and R. Henderson. Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy. Journal of Molecular Biology, 333(4):721–745, 2003.
  • [20] H. R. Saibil. Macromolecular structure determination by cryo-electron microscopy. Acta Cryst. D, 56:1215–1222, 2000.
  • [21] S. H. W. Scheres. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct Biol., 180(3):519–530, 2012.
  • [22] R. R. Coifman, Y. Shkolnisky, F. J. Sigworth, and A. Singer. Reference free structure determination through eigenvectors of center of mass operators. Appl. Comput. Harmon. Anal., 28:296-312, 2010. [WoS]
  • [23] Y. Shkolnisky and A. Singer. Viewing direction estimation in cryo-em using synchronization. SIAM J. Imageing Sciences, 5(3):1088–1110, 2012. [WoS]
  • [24] A. Singer and Y. Shkolnisky. Three-dimensional structure determination from common lines in cryo-em by eigenvectors and semidefinite programming. SIAM J. Imageing Sciences, 4(2):543–572, 2011. [WoS]
  • [25] L. Wang, A. Singer and Z. Wen. Orientation Determination from Cryo-EM images Using Least Unsquared Deviation.
  • [26] C. O. S. Sorzano, S. Jonic, C. El-Bez, J. M. Carazo, S. De Carlo, P. Thévenaz, and M. Unser. A multiresolution approach to pose assignment in 3-D electron microscopy of single particles. J. Struct. Biol., 146:381–392, 2004.
  • [27] X. Wang and G. Xu. A Fast Classification Method for Single-Particle Projections with a Translation and Rotation Invariant. Journal of Comp. Math., 31:2(2013), 137-153. [WoS]
  • [28] G. Xu, M. Li, A. Gopinath, and C. L. Bajaj. Inversion of Electron Tomography Images Using L2-Gradient Flows–Computational Methods. Journal of Computational Mathematics, 29(5):501–525, 2011. [WoS]

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.