Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 3 | 1 |
Tytuł artykułu

A topological approach for protein classification

Treść / Zawartość
Warianty tytułu
Języki publikacji
Protein function and dynamics are closely related to its sequence and structure.However, prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity between proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics. Persistent homology is a new branch of algebraic topology that has found its success in the topological data analysis in a variety of disciplines, including molecular biology. The present work explores the potential of using persistent homology as an independent tool for protein classification. To this end, we propose a molecular topological fingerprint based support vector machine (MTF-SVM) classifier. Specifically,we construct machine learning feature vectors solely fromprotein topological fingerprints,which are topological invariants generated during the filtration process. To validate the presentMTF-SVMapproach, we consider four types of problems. First, we study protein-drug binding by using the M2 channel protein of influenza A virus. We achieve 96% accuracy in discriminating drug bound and unbound M2 channels. Secondly, we examine the use of MTF-SVM for the classification of hemoglobin molecules in their relaxed and taut forms and obtain about 80% accuracy. Thirdly, the identification of all alpha, all beta, and alpha-beta protein domains is carried out using 900 proteins.We have found a 85% success in this identification. Finally, we apply the present technique to 55 classification tasks of protein superfamilies over 1357 samples and 246 tasks over 11944 samples. Average accuracies of 82% and 73% are attained. The present study establishes computational topology as an independent and effective alternative for protein classification.
Opis fizyczny
  • Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
  • Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS 6211, Oak Ridge, TN 37831, USA
  • Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
  • Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
  • Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
  • Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210,
  • [1] P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang. Extreme elevation on a 2-manifold. Discrete and ComputationalGeometry (DCG), 36(4):553–572, 2006.[Crossref]
  • [2] S. F. Altschul. A protein alignment scoring system sensitive at all evolutionary distances. Journal of molecular evolution,36(3):290–300, 1993.
  • [3] I. Bahar, A. R. Atilgan, and B. Erman. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonicpotential. Folding and Design, 2:173 – 181, 1997.
  • [4] P.W. Bates, Z. Chen, Y. H. Sun, G.W. Wei, and S. Zhao. Geometric and potential driving formation and evolution of biomolecularsurfaces. J. Math. Biol., 59:193–231, 2009.[Crossref]
  • [5] P.W. Bates, G.W. Wei, and S. Zhao. Minimalmolecular surfaces and their applications. Journal of Computational Chemistry,29(3):380–91, 2008.[Crossref]
  • [6] U. Bauer, M. Kerber, and J. Reininghaus. Distributed computation of persistent homology. Proceedings of the SixteenthWorkshop on Algorithm Engineering and Experiments (ALENEX), 2014.
  • [7] P. Bendich, H. Edelsbrunner, and M. Kerber. Computing robustness and persistence for images. IEEE Transactions onVisualization and Computer Graphics, 16:1251–1260, 2010.[Crossref]
  • [8] P. Bendich and J. Harer. Persistent intersection homology. Foundations of ComputationalMathematics (FOCM), 11(3):305–336, 2011.
  • [9] J. Bennett, F. Vivodtzev, and V. Pascucci, editors. Topological and statistical methods for complex data: Tackling largescale,high-dimensional and multivariate data spaces. Mathematics and Visualization. Springer-Verlag Berlin Heidelberg,2015.
  • [10] S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, and M. Spagnuolo. Describing shapes bygeometrical-topological properties of real functions. ACM Computing Surveys, 40(4):12, 2008.
  • [11] P. T. Bremer, V. P. I. Hotz, and R. Peikert, editors. Topological methods in data analysis and visualization III: Theory, algorithmsand applications. Mathematics and Visualization. Springer International Publishing, 2014.
  • [12] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. States, S. Swaminathan, and M. Karplus. Charmm: A program for macromolecularenergy, minimization, and dynamics calculations. J. Comput. Chem., 4:187–217, 1983.[Crossref]
  • [13] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery,2:121–167, 1998.
  • [14] G. Carlsson. Topology and data. Am. Math. Soc, 46(2):255–308, 2009.[Crossref]
  • [15] G. Carlsson and V. De Silva. Zigzag persistence. Foundations of computational mathematics, 10(4):367–405, 2010.[Crossref]
  • [16] G. Carlsson, V. de Silva, and D. Morozov. Zigzag persistent homology and real-valued functions. In Proc. 25th Annu. ACMSympos. Comput. Geom., pages 247–256, 2009.
  • [17] G. Carlsson, T. Ishkhanov, V. Silva, and A. Zomorodian. On the local behavior of spaces of natural images. InternationalJournal of Computer Vision, 76(1):1–12, 2008.[Crossref]
  • [18] G. Carlsson, G. Singh, and A. Zomorodian. Computing multidimensional persistence. In Algorithms and computation,pages 730–739. Springer, 2009.
  • [19] G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete Computational Geometry, 42(1):71–93, 2009.[Crossref]
  • [20] G. Carlsson, A. Zomorodian, A. Collins, and L. J. Guibas. Persistence barcodes for shapes. International Journal of ShapeModeling, 11(2):149–187, 2005.
  • [21] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems andTechnology, 2:27:1–27:27, 2011. Software available at
  • [22] H. W. Chang, S. Bacallado, V. S. Pande, and G. E. Carlsson. Persistent topology and metastable state in conformationaldynamics. PLos ONE, 8(4):e58699, 2013.
  • [23] F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Oudot. Proximity of persistence modules and their diagrams. InProc. 25th ACM Sympos. on Comput. Geom., pages 237–246, 2009.
  • [24] F. Chazal, L. J. Guibas, S. Y. Oudot, and P. Skraba. Persistence-based clustering in riemannian manifolds. In Proceedingsof the 27th annual ACM symposium on Computational geometry, SoCG ’11, pages 97–106, 2011.
  • [25] D. Chen, Z. Chen, C. Chen, W. H. Geng, and G. W. Wei. MIBPB: A software package for electrostatic analysis. J. Comput.Chem., 32:657 – 670, 2011.
  • [26] D. Chen, Z. Chen, and G. W. Wei. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.International Journal for Numerical Methods in Biomedical Engineering, 28:25 – 51, 2012.
  • [27] D. Chen and G. W. Wei. Quantum dynamics in continuum for proton transport-Generalized correlation. J Chem. Phys.,136:134109, 2012.[Crossref]
  • [28] Z. Chen, N. A. Baker, and G.W. Wei. Differential geometry based solvation models I: Eulerian formulation. J. Comput. Phys.,229:8231–8258, 2010.[Crossref]
  • [29] Z. Chen, N. A. Baker, and G. W. Wei. Differential geometry based solvation models II: Lagrangian formulation. J. Math.Biol., 63:1139– 1200, 2011.[Crossref]
  • [30] Z. Chen, S. Zhao, J. Chun, D. G. Thomas, N. A. Baker, P. B. Bates, and G.W. Wei. Variational approach for nonpolar solvationanalysis. Journal of Chemical Physics, 137(084101), 2012.
  • [31] J. L. Cheng, M. J. Sweredoski, and P. Baldi. DOMpro: Protein domain prediction using profiles, secondary structure, relativesolvent accessibility, and recursive neural networks. Data Mining and Knowledge Discovery, 13:1–10, 2006.
  • [32] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete & Computational Geometry,37(1):103–120, 2007.[Crossref]
  • [33] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending persistence using poincaré and lefschetz duality. Foundationsof Computational Mathematics, 9(1):79–103, 2009.[Crossref]
  • [34] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and D. Morozov. Persistent homology for kernels, images, and cokernels. InProceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 09, pages 1011–1020, 2009.
  • [35] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.[Crossref]
  • [36] Y. Dabaghian, F. Memoli, L. Frank, and G. Carlsson. A topological paradigm for hippocampal spatial map formation usingpersistent homology. PLoS Comput Biol, 8(8):e1002581, 08 2012.[Crossref]
  • [37] S. J. Darnell, L. LeGault, and J. C. Mitchell. Kfc server: interactive forecasting of protein interaction hot spots. NUCLEICACIDS RESEARCH, 36:W265–W269, 2008.[Crossref]
  • [38] M. Dash and H. Liu. Feature selection for classification. Intelligent data analysis, 1(1):131–156, 1997.
  • [39] V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Persistent cohomology and circular coordinates. Discrete and Comput.Geom., 45:737–759, 2011.
  • [40] T. K. Dey, F. Fan, and Y.Wang. Computing topological persistence for simplicialmaps. In Proc. 30th Annu. Sympos. Comput.Geom. (SoCG), pages 345–354, 2014.
  • [41] B. Di Fabio and C. Landi. A mayer-vietoris formula for persistent homology with an application to shape recognition in thepresence of occlusions. Foundations of Computational Mathematics, 11:499–527, 2011.
  • [42] H. Edelsbrunner and J. Harer. Computational topology: an introduction. American Mathematical Soc., 2010.
  • [43] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete Comput. Geom.,28:511–533, 2002.
  • [44] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training support vector machines.The Journal of Machine Learning Research, 6:1889–1918, 2005.
  • [45] T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.[Crossref]
  • [46] X. Feng, K. Xia, Y. Tong, and G.-W. Wei. Geometric modeling of subcellular structures, organelles and large multiproteincomplexes. International Journal for Numerical Methods in Biomedical Engineering, 28:1198–1223, 2012.
  • [47] X. Feng, K. L. Xia, Y. Y. Tong, and G.W. Wei. Multiscale geometric modeling ofmacromolecules II: lagrangian representation.Journal of Computational Chemistry, 34:2100–2120, 2013.[Crossref]
  • [48] C. Fernandez-Lozano, E. Fernandez-Blanco, K. Dave, N. Pedreira, M. Gestal, J. Dorado, and C. R. Munteanu. Improvingenzyme regulatory protein classification by means of svm-rfe feature selection. Molecular Biosystems, 10:1063–1071,2014.[Crossref]
  • [49] P. J. Flory. Statistical thermodynamics of random networks. Proc. Roy. Soc. Lond. A,, 351:351 – 378, 1976.
  • [50] N. K. Fox, S. E. Brenner, and J.-M. Chandonia. Scope: Structural classification of proteins-extended, integrating scop andastral data and classification of new structures. Nucleic acids research, 42(D1):D304–D309, 2014.[Crossref]
  • [51] P. Frosini. A distance for similarity classes of submanifolds of a Euclidean space. BUllentin of Australian MathematicalSociety, 42(3):407–416, 1990.
  • [52] P. Frosini and C. Landi. Size theory as a topological tool for computer vision. Pattern Recognition and Image Analysis,9(4):596–603, 1999.
  • [53] P. Frosini and C. Landi. Persistent betti numbers for a noise tolerant shape-based approach to image retrieval. PatternRecognition Letters, 34:863–872, 2013.[Crossref]
  • [54] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi. Volume data mining using 3d field topology analysis. IEEE ComputerGraphics and Applications, 20(5):46–51, 2000.
  • [55] M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow, and V. Nanda. Topological measurement of protein compressibilityvia persistence diagrams. Japan Journal of Industrial and Applied Mathematics, 32:1–17, 2014.
  • [56] R. Ghrist. Barcodes: The persistent topology of data. Bull. Amer. Math. Soc., 45:61–75, 2008.
  • [57] N. Go, T. Noguti, and T. Nishikawa. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc.Natl. Acad. Sci., 80:3696 – 3700, 1983.[Crossref]
  • [58] S. Henikoff and J. G. Henikoff. Amino acid substitutionmatrices from protein blocks. Proceedings of the National Academyof Sciences, 89(22):10915–10919, 1992.
  • [59] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527–1554,2006.[Crossref]
  • [60] D. Horak, S. Maletic, and M. Rajkovic. Persistent homology of complex networks. Journal of Statistical Mechanics: Theoryand Experiment, 2009(03):P03034, 2009.[Crossref]
  • [61] D. J. Jacobs, A. J. Rader, L. A. Kuhn, and M. F. Thorpe. Protein flexibility predictions using graph theory. Proteins-Structure,Function, and Genetics, 44(2):150–165, AUG 1 2001.
  • [62] S. Jo, M. Vargyas, J. Vasko-Szedlar, B. Roux, and W. Im. Pbeq-solver for online visualization of electrostatic potential ofbiomolecules. Nucleic Acids Research, 36:W270 –W275, 2008.[Crossref]
  • [63] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and T. L. Madden. Ncbi blast: a better web interface.Nucleic acids research, 36(suppl 2):W5–W9, 2008.[Crossref]
  • [64] T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology, volume 157 of Applied Mathematical Sciences.Springer-Verlag, New York, 2004.
  • [65] P. M. Kasson, A. Zomorodian, S. Park, N. Singhal, L. J. Guibas, and V. S. Pande. Persistent voids a new structural metric formembrane fusion. Bioinformatics, 23:1753–1759, 2007.[Crossref]
  • [66] B. Krishnamoorthy, S. Provan, and A. Tropsha. A topological characterization of protein structure. In Data Mining inBiomedicine, Springer Optimization and Its Applications, pages 431–455, 2007.
  • [67] R. A. Laskowski, J. D.Watson, and J. M. Thornton. Profunc: a server for predicting protein function from 3d structure. Nucleicacids research, 33(suppl 2):W89–W93, 2005.[Crossref]
  • [68] D. Lee, O. Redfern, and C. Orengo. Predicting protein function from sequence and structure. Nature ReviewsMolecular CellBiology, 8(12):995–1005, 2007.[Crossref]
  • [69] H. Lee, H. Kang, M. K. Chung, B. Kim, and D. S. Lee. Persistent brain network homology from the perspective of dendrogram.Medical Imaging, IEEE Transactions on, 31(12):2267–2277, Dec 2012.
  • [70] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, andW. S. Noble. Mismatch string kernels for discriminative protein classification.Bioinformtics, 20:467–476, 2004.[Crossref]
  • [71] M. Levitt, C. Sander, and P. S. Stern. Protein normal-mode dynamics: Trypsin inhibitor, crambin, ribonuclease andlysozyme. J. Mol. Biol., 181(3):423 – 447, 1985.[Crossref]
  • [72] W. Li, A. Cowley, M. Uludag, T. Gur, H. McWilliam, S. Squizzato, Y. M. Park, N. Buso, and R. Lopez. The embl-ebi bioinformaticsweb and programmatic tools framework. Nucleic acids research, page gkv279, 2015.
  • [73] X. Liu, Z. Xie, and D. Yi. A fast algorithm for constructing topological structure in large data. Homology, Homotopy andApplications, 14:221–238, 2012.
  • [74] J. A. McCammon, B. R. Gelin, and M. Karplus. Dynamics of folded proteins. Nature, 267:585–590, 1977.[Crossref]
  • [75] W. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics,5:115–133, 1943.[Crossref]
  • [76] P. Meinicke. UProC: tools for ultra-fast protein domain classification. Bioinformtics, 31:1382–1388, 2015.[Crossref]
  • [77] K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak. Construction of symbolic dynamics from experimental time series.Physical Review Letters, 82:1144–1147, 1999.[Crossref]
  • [78] K. Mischaikow and V. Nanda. Morse theory for filtrations and eflcient computation of persistent homology. Discrete andComputational Geometry, 50(2):330–353, 2013.[Crossref]
  • [79] V. Nanda. Perseus: the persistent homology software. Software available at
  • [80] P. Niyogi, S. Smale, and S. Weinberger. A topological view of unsupervised learning from noisy data. SIAM Journal onComputing, 40:646–663, 2011.[Crossref]
  • [81] K. Opron, K. L. Xia, and G. W. Wei. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis.Journal of Chemical Physics, 140:234105, 2014.[Crossref]
  • [82] K. Opron, K. L. Xia, and G. W. Wei. Communication: Capturing protein multiscale thermal fluctuations. Journal of ChemicalPhysics, 142(211101), 2015.
  • [83] S. Y. Oudot and D. R. Sheehy. Zigzag Zoology: Rips Zigzags for Homology Inference. In Proc. 29th Annual Symposium onComputational Geometry, pages 387–396, June 2013.
  • [84] D. Pachauri, C. Hinrichs, M. Chung, S. Johnson, and V. Singh. Topology-based kernels with application to inference problemsin alzheimer’s disease. Medical Imaging, IEEE Transactions on, 30(10):1760–1770, Oct 2011.
  • [85] J. A. Perea, A. Deckard, S. B. Haase, and J. Harer. Sw1pers: Sliding windows and 1-persistence scoring; discovering periodicityin gene expression time series data. BMC Bioinformatics, 16:257, 2015.
  • [86] J. A. Perea and J. Harer. Sliding windows and persistence: An application of topological methods to signal analysis. Foundationsof Computational Mathematics, 15:799–838, 2015.[Crossref]
  • [87] R. M. Pielak and J. J. Chou. Influenza m2 proton channels. Biochimica et Biophysica Acta (BBA)-Biomembranes,1808(2):522–529, 2011.
  • [88] R. M. Pielak, K. Oxenoid, and J. J. Chou. Structural investigation of rimantadine inhibition of the am2-bm2 chimera channelof influenza viruses. Structure, 19(11):1655–1663, 2011.
  • [89] B. Rieck, H. Mara, and H. Leitte. Multivariate data analysis using persistence-based filtering and topological signatures.IEEE Transactions on Visualization and Computer Graphics, 18:2382–2391, 2012.[Crossref]
  • [90] V. Robins. Towards computing homology from finite approximations. In Topology Proceedings, volume 24, pages 503–532,1999.
  • [91] A. Roy, A. Kucukural, and Y. Zhang. I-tasser: a unified platform for automated protein structure and function prediction.Nature protocols, 5(4):725–738, 2010.[Crossref]
  • [92] V. D. Silva and R. Ghrist. Blind swarms for coverage in 2-d. In In Proceedings of Robotics: Science and Systems, page 01,2005.
  • [93] G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson, and D. L. Ringach. Topological analysis of population activity invisual cortex. Journal of Vision, 8(8), 2008.
  • [94] P. Sonego, M. Pacurar, S. Dhir, A. Kertész-Farkas, A. Kocsor, Z. Gáspári, J. A. Leunissen, and S. Pongor. A protein classificationbenchmark collection for machine learning. Nucleic Acids Research, 35(suppl 1):D232–D236, 2007.[Crossref]
  • [95] G. D. Stormo, T. D. Schneider, L. Gold, and A. Ehrenfeucht. Use of the ‘perceptron’ algorithm to distinguish translationalinitiation sites in e. coli. Nucleic Acids Research, 10:2997–3011, 1982.[Crossref]
  • [96] M. Tasumi, H. Takenchi, S. Ataka, A. M. Dwidedi, and S. Krimm. Normal vibrations of proteins: Glucagon. Biopolymers,21:711 – 714, 1982.[Crossref]
  • [97] A. Tausz, M. Vejdemo-Johansson, and H. Adams. Javaplex: A research software package for persistent (co)homology. Softwareavailable at, 2011.
  • [98] A. Tausz, M. Vejdemo-Johansson, and H. Adams. JavaPlex: A research software package for persistent (co)homology. InH. Hong and C. Yap, editors, Proceedings of ICMS 2014, Lecture Notes in Computer Science 8592, pages 129–136, 2014.
  • [99] M. M. Tirion. Largeamplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett., 77:1905– 1908, 1996.[Crossref]
  • [100] B. Wang, B. Summa, V. Pascucci, and M. Vejdemo-Johansson. Branching and circular features in high dimensional data.IEEE Transactions on Visualization and Computer Graphics, 17:1902–1911, 2011.[Crossref]
  • [101] B. Wang and G. W. Wei. Objective-oriented Persistent Homology. ArXiv e-prints, Dec. 2014.
  • [102] G. W. Wei. Differential geometry based multiscale models. Bulletin of Mathematical Biology, 72:1562 – 1622, 2010.[Crossref]
  • [103] G.-W. Wei. Multiscale, multiphysics and multidomain models I: Basic theory. Journal of Theoretical and ComputationalChemistry, 12(8):1341006, 2013.
  • [104] G.-W. Wei, Q. Zheng, Z. Chen, and K. Xia. Variational multiscale models for charge transport. SIAM Review, 54(4):699 –754, 2012.[Crossref]
  • [105] W. Wu, A. Srivastava, J. Laborde, and J. F. Zhang. An eflcient multiple protein structure comparison method and its applicationto structure clustering and outlier detection. IEEE, BIBM, pages 69–73, 2013.
  • [106] K. L. Xia, X. Feng, Y. Y. Tong, and G.W. Wei. Persistent homology for the quantitative prediction of fullerene stability. Journalof Computational Chemsitry, 36:408–422, 2015.
  • [107] K. L. Xia, K. Opron, and G. W. Wei. Multiscale multiphysics and multidomain models - Flexibility and rigidity. Journal ofChemical Physics, 139:194109, 2013.[Crossref]
  • [108] K. L. Xia and G. W. Wei. Persistent homology analysis of protein structure, flexibility and folding. International Journal forNumerical Methods in Biomedical Engineerings, 30:814–844, 2014.
  • [109] K. L. Xia and G. W. Wei. Multidimensional persistence in biomolecular data. Journal Computational Chemistry, 36:1502–1520, 2015.
  • [110] K. L. Xia and G. W. Wei. Persistent topology for cryo-EM data analysis. International Journal for Numerical Methods inBiomedical Engineering, 31:e02719, 2015.
  • [111] K. L. Xia, Z. X. Zhao, and G. W. Wei. Multiresolution topological simplification. Journal Computational Biology, 22:1–5,2015.
  • [112] K. L. Xia, Z. X. Zhao, and G. W. Wei. Multiresolution persistent homology for excessively large biomolecular datasets.Journal of Chemical Physics, in press, 2015.
  • [113] Y. Yao, J. Sun, X. H. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J. Guibas, V. S. Pande, and G. Carlsson. Topologicalmethods for exploring low-density states in biomolecular folding pathways. The Journal of Chemical Physics, 130:144115,2009.[Crossref]
  • [114] Q. Zheng, S. Y. Yang, and G.W. Wei. Molecular surface generation using PDE transform. International Journal for NumericalMethods in Biomedical Engineering, 28:291–316, 2012.
  • [115] Y. C. Zhou, M. Feig, and G. W. Wei. Highly accurate biomolecular electrostatics in continuum dielectric environments.Journal of Computational Chemistry, 29:87–97, 2008.[Crossref]
  • [116] A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete Comput. Geom., 33:249–274, 2005.
  • [117] Jie Liang. Geometry of protein shape and its evolutionary pattern for function prediction and characterization. Engineeringin Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2324–2327,2009.
  • [118] Liang, Jie and Kachalo, Sema and Li, Xiang and Ouyang, Zheng and Tseng, Yan-Yuan and Zhang, Jinfeng. Geometric structuresof proteins for understanding folding, discriminating natives and predicting biochemical functions. The World is aJigsaw, 2009.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.