PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 3 | 1 |
Tytuł artykułu

Shape Correspondence Analysis for Biomolecules Based on Volumetric Eigenfunctions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The functionality of biomolecules depends on their flexible structures, which can be characterized by their surface shapes. Tracking the deformation and comparing biomolecular shapes are essential in understanding their mechanisms. In this paper, a new spectral shape correspondence analysis method is introduced for biomolecules based on volumetric eigenfunctions. The eigenfunctions are computed from the joint graph of two given shapes, avoiding the sign flipping and confusion in the order of modes. An initial correspondence is built based on the distribution of a shape diameter, which matches similar surface features in different shapes and guides the eigenfunction computation. A two-step scheme is developed to determine the final correspondence. The first step utilizes volumetric eigenfunctions to correct the assignment of boundary nodes that disobeys the main structures. The second step minimizes the distortion induced by deforming one shape to the other. As a result, a dense point correspondence is constructed between the two given shapes, based on which we approximate and predict the shape deformation, as well as quantitatively measure the detailed shape differences.
Wydawca
Rocznik
Tom
3
Numer
1
Opis fizyczny
Daty
otrzymano
2015-04-17
zaakceptowano
2015-09-29
online
2015-10-08
Twórcy
autor
  • Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United
    States
autor
  • Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,
    United States
autor
  • Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,
    United States
  • Department of Computational Biology, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United States
  • Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, United
    States
  • Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,
    United States
Bibliografia
  • ---
  • [1] M. Carcassoni and E. Hancock. Correspondence matching with modal clusters. IEEE Transactions on Pattern Analysis andMachine Intelligence, 25(12):1609–1615, 2003.[Crossref]
  • [2] F. Chung. Spectral graph theory. American Mathematical Soc., 1997.
  • [3] S. Dong, S. Kircher, and M. Garland. Harmonic functions for quadrilateral remeshing of arbitrarymanifolds. Computer aidedgeometric design, 22(5):392–423, 2005.
  • [4] Z. Gao, Z. Yu, and X. Pang. A compact shape descriptor for triangular surface meshes. Computer-Aided Design, 53:62–69,2014.[WoS]
  • [5] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. Kunii. Topologymatching for fully automatic similarity estimation of 3D shapes.In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pages 203–212, 2001.
  • [6] V. Jain and H. Zhang. Robust 3D shape correspondence in the spectral domain. In Shape Modeling and Applications 2006,pages 19–32, 2006.
  • [7] O. Van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. A survey on shape correspondence. Computer Graphics Forum,30(6):1681–1707, 2011.[Crossref][WoS]
  • [8] H.-C. Lee and G. Yang. Integrating dimension reduction with mean-shift clustering for biological shape classification. InIEEE 11th International Symposium on Biomedical Imaging (ISBI), pages 254–257, 2014.
  • [9] Z. Li, S. Qin, Z. Yu, and Y. Jin. Skeleton-based shape analysis of protein models. Journal ofMolecular Graphics andModelling,53:72–81, 2014.
  • [10] Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G. Lavoué, H. Van Nguyen, and R. Ohbuchi. Acomparison of methods for non-rigid 3D shape retrieval. IEEE Transactions on Pattern Recognition, 46(1):449–461, 2013.[Crossref][WoS]
  • [11] T. Liao, G. Xu, and Y. Zhang. Structure-aligned guidance estimation in surface parameterization using eigenfunction-basedcross field. Graphical Models, 76:691–705, 2014.
  • [12] T. Liao, Y. Zhang, P. Kekenes-Huskey, Y. Cheng, A. Michailova, A.D. McCulloch, M. Holst, and J.A. McCammon. Multi-core CPUor GPU-accelerated multiscale modeling for biomolecular complexes. Molecular Based Mathematical Biology, 1:164–179,2013.
  • [13] H. Lombaert, L. Grady, J. Polimeni, and F. Cheriet. Fast brain matching with spectral correspondence. In Information Processingin Medical Imaging, pages 660–673, 2011.
  • [14] H. Lombaert, L. Grady, J. Polimeni, and F. Cheriet. Focusr: Feature oriented correspondence using spectral regularization –a method for precise surface matching. Pattern Analysis and Machine Intelligence, 35(9):2143–2160, 2013.[WoS]
  • [15] H. Lombaert, J. Sporring, and K. Siddiqi. Diffeomorphic spectral matching of cortical surfaces. In Information Processing inMedical Imaging, pages 376–389, 2013.
  • [16] D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer. Articulated shape matching using Laplacian eigenfunctionsand unsupervised point registration. IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008.
  • [17] D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer. Articulated shape matching using Laplacian eigenfunctionsand unsupervised point registration. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2008.
  • [18] M. Niethammer, M. Reuter, F. Wolter, S. Bouix, N. Peinecke, M. Koo, and M. Shenton. Global medical shape analysis usingthe Laplace-Beltrami spectrum. In Medical Image Computing and Computer-Assisted Intervention – MICCAI, pages 850–857.2007.
  • [19] M. Reuter. Hierarchical shape segmentation and registration via topological features of Laplace-Beltrami eigenfunctions.International Journal of Computer Vision, 89(2-3):287–308, 2010.[WoS][Crossref]
  • [20] M. Reuter, F. Wolter, and N. Peinecke. Laplace-spectra as fingerprints for shape matching. In Proceedings of the ACMsymposium on solid and physical modeling, pages 101–106, 2005.
  • [21] M. Reuter, F. Wolter, and N. Peinecke. Laplace-Beltrami spectra as "Shape-DNA" of surfaces and solids. Computer-AidedDesign, 38(4):342–366, 2006.[Crossref]
  • [22] G. Scott and H. C. Longuet-Higgins. An algorithm for associating the features of two images. Proceedings of the RoyalSociety of London. Series B: Biological Sciences, 244(1309):21–26, 1991.
  • [23] L. Shapiro and J. Michael Brady. Feature-based correspondence: an eigenvector approach. Image and Vision Computing,10(5):283–288, 1992.[Crossref]
  • [24] O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In ACM International Conference Proceeding Series, volume257, pages 109–116, 2007.
  • [25] S. Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysisand Machine Intelligence, 10(5):695–703, 1988.[Crossref][WoS]
  • [26] Y. Zhang, C. L. Bajaj, and B. Sohn. 3D finite element meshing from imaging data. Computer Methods in Applied Mechanicsand Engineering, 194(48–49):5083–5106, 2005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_mlbmb-2015-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.