Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 3 | 1 |

Tytuł artykułu

Modeling and Simulation of Thermo-Fluid-Electrochemical Ion Flow in Biological Channels

Treść / Zawartość

Warianty tytułu

Języki publikacji



In this articlewe address the study of ion charge transport in the biological channels separating the intra and extracellular regions of a cell. The focus of the investigation is devoted to including thermal driving forces in the well-known velocity-extended Poisson-Nernst-Planck (vPNP) electrodiffusion model. Two extensions of the vPNP system are proposed: the velocity-extended Thermo-Hydrodynamic model (vTHD) and the velocity-extended Electro-Thermal model (vET). Both formulations are based on the principles of conservation of mass, momentum and energy, and collapse into the vPNP model under thermodynamical equilibrium conditions. Upon introducing a suitable one-dimensional geometrical representation of the channel,we discuss appropriate boundary conditions that depend only on effectively accessible measurable quantities. Then, we describe the novel models, the solution map used to iteratively solve them, and the mixed-hybrid flux-conservative stabilized finite element scheme used to discretize the linearized equations. Finally,we successfully apply our computational algorithms to the simulation of two different realistic biological channels: 1) the Gramicidin-A channel considered in [12]; and 2) the bipolar nanofluidic diode considered in [45].

Słowa kluczowe







Opis fizyczny




  • Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
  • Istituto di Matematica Applicata e Tecnologie Informatiche, CNR, Via E. Bassini, 15, 20133 Milano, Italy
  • Northwestern University, Mathematics Department, 2033 Sheridan Road Evanston, IL 60208-2730, USA


  • ---
  • [1] A. Abramo, R. Brunetti, C. Fiegna, C. Jacoboni, B. Riccò, E. Sangiorgi, and F. Venturi. Monte Carlo simulation of silicon devices. In G. Baccarani, editor, Process and Device Modeling for Microelectronics, chapter 2, pages 155–216. Elsevier, 1993.
  • [2] P. Airoldi, A. G. Mauri, R. Sacco, and J. W. Jerome. Three-dimensional numerical simulation of ion nanochannels. Journal of Coupled Systems and Multiscale Dynamics, 3(1):57–65, 2015-04-01T00:00:00.
  • [3] T. Arbogast and Z. Chen. On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comput., 64(211):943–972, July 1995.
  • [4] D.N Arnold and F. Brezzi. Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. Math. Modeling and Numer. Anal., 19(1):7–32, 1985.
  • [5] G. Baccarani, M. Rudan, R. Guerrieri, and P. Ciampolini. Process and device modeling. chapter Physical models for numerical device simulation, pages 107–158. North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands, 1986.
  • [6] D. Boda, M. Valiskó, D. Henderson, R.S. Eisenberg, D. Gillespie, and W. Nonner. Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion. J. Ge, Physiol., 133(5):497–509, 2009. [WoS]
  • [7] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, 1991.
  • [8] A. N. Brooks and T. J.R. Hughes. Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32(1˘20133):199 – 259, 1982. [Crossref]
  • [9] M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine, and D. Julius. The capsaicin receptor: a heatactivated ion channel in the pain pathway. Nature, 389(6653):816–824, October 1997.
  • [10] D. P. Chen and R. S. Eisenberg. Charges, currents, and potentials in ionic channels of one conformation. Biophysical journal, 64(5):1405–1421, 1993. [Crossref]
  • [11] D. P. Chen and R. S. Eisenberg. Flux, coupling, and selectivity in ionic channels of one conformation. Biophysical journal, 65:727–746, 1993. [Crossref]
  • [12] D.P. Chen, R.S. Eisenberg, J.W. Jerome, and C.W. Shu. Hydrodynamic model of temperature change in open ionic channels. Biophysical Journal, 69(6):2304 – 2322, 1995. [Crossref]
  • [13] J Douglas and J. E. Roberts. Global estimates for mixed methods for second order elliptic equations. Math. Comp., 44:39–52, 1985.
  • [14] R. S. Eisenberg. Ions in fluctuating channels: transistors alive. Fluctuations and Noise Letters, 11:76–96, 2005.
  • [15] G. B. Ermentrout and D. H. Terman. Mathematical Foundations of Neuroscience. Springer, 2010.
  • [16] H. L. Fields. Pain. McGraw-Hill, New York, 1987.
  • [17] K. Hess, U. Ravaioli, N.R. Aluru, M. Gupta, and R.S. Eisenberg. Simulation of biological ionic channels by technology computer-aided design. In Computational Electronics, 2000. Book of Abstracts. IWCE Glasgow 2000. 7th InternationalWorkshop on, pages 70–, May 2000.
  • [18] K. Hess, U. Ravaioli, M. Gupta, N. Aluru, van der Straaten, and R. S. Eisenberg. Simulation of biological ionic channels by technology computer-aided design. VLSI Design, 13(1-4):179–187, 2001. [Crossref]
  • [19] B. Hille. Ionic Channels of Excitable Membranes. Sinauer Associates, Inc., Sunderland, MA, 2001.
  • [20] A.L. Hodgkin and A.F. Huxley. Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. Journal of Physiology, 116:449–472, 1952. [Crossref]
  • [21] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current’and its application to conduction and excitation in nerve. Journal of Physiology, 117:500–544, 1952. [Crossref]
  • [22] S. Hu and K. Hess. An application of the recombination and generation theory by Shockley, Read and Hall to biological ion channels. Journal of Computational Electronics, 4(1-2):153–156, 2005. [Crossref]
  • [23] J.W. Jerome. Analysis of charge transport. Springer-Verlag, 1996.
  • [24] J.W. Jerome. Analytical approaches to charge transport in a moving medium. Transport Theory and Statistical Physics, 31:333–366, 2002.
  • [25] J.W. Jerome and R. Sacco. Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initialboundary value problem. Nonlinear Analysis, 71:e2487–e2497, 2009.
  • [26] A. Juengel. Transport Equations for Semiconductors. Number 773 in Lecture Notes in Physics. Springer, Berlin, 2009.
  • [27] J. P. Keener and J. Sneyd. Mathematical Physiology. Springer, New York, 1998.
  • [28] T. Kerkhoven and Y. Saad. On acceleration methods for coupled nonlinear elliptic systems. Numerische Mathematik, 60:525–548, 1992. [Crossref]
  • [29] F.Manganini. Thermo-electro-chemical modeling and simulation of ion transport in nanochannels. Master’s thesis, Politecnico di Milano, 2013.
  • [30] P.A. Markowich. The Stationary Semiconductor Device Equations. Computational Microelectronics. Springer-Verlag, 1986.
  • [31] P.A. Markowich, C.A. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer-Verlag, 1990.
  • [32] R.S. Muller and T.I. Kamins. Device Electronics for Integrated Circuits. Wiley, 2002.
  • [33] S. Pandey, A. Bortei-Doku, and M. H. White. Simulation of biological ion channels with technology computer-aided design. Computer Methods and Programs in Biomedicine, 85(1):1 – 7, 2007.
  • [34] J.E. Roberts and J.M. Thomas. Mixed and hybrid methods. In P.G. Ciarlet and J.L. Lions, editors, Finite Element Methods, Part I. North-Holland, Amsterdam, 1991. Vol.2.
  • [35] H. G. Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer- Verlag Berlin Heidelberg, 2008.
  • [36] I. Rubinstein. Electrodiffusion of Ions. SIAM, Philadelphia, PA, 1990.
  • [37] M. Rudan, A. Gnudi, and W. Quade. A generalized approach to the hydrodynamic model of semiconductor equations. In G. Baccarani, editor, Process and Device Modeling for Microelectronics, chapter 2, pages 109–154. Elsevier, 1993.
  • [38] R. Sacco and F. Saleri. Stabilized mixed finite volume methods for convection-diffusion problems. East West J. Numer.Math., 5(4):291–311, 1997.
  • [39] D.L. Scharfetter and H.K. Gummel. Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron Devices, ED-16(1):64–77, 1969. [Crossref]
  • [40] M. Schmuck. Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. Mathematical Models and Methods in Applied Sciences, 19(6):993–1015, 2009.
  • [41] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag, 1984.
  • [42] C.W. Shu and S. Osher. Eflcient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2):439 – 471, 1988. [Crossref]
  • [43] C.W. Shu and S. Osher. Eflcient implementation of essentially non-oscillatory shock-capturing schemes, {II}. Journal of Computational Physics, 83(1):32 – 78, 1989. [Crossref]
  • [44] L. Vay, C. Gu, and P.A. McNaughton. The thermo-trp ion channel family: properties and therapeutic implications. British Journal of Pharmacology, 165(4):787–801, 2012. [WoS][Crossref]
  • [45] I. Vlassiouk, S. Smirnov, and Z.S. Siwy. Nanofluidic ionic diodes. comparison of analytical and numerical solutions. ACS Nano, 2(8):1589–1602, 2008. [WoS][Crossref]
  • [46] T. Voets, G. Droogmans, U. Wissenbach, A. Janssens, V. Flockerzi, and B. Nilius. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature, 430(7001):748–754, 2004.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.