Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 3 | 1 |

Tytuł artykułu

A Quantum Corrected Poisson-Nernst-Planck Model for Biological Ion Channels


Treść / Zawartość

Warianty tytułu

Języki publikacji



A quantum corrected Poisson-Nernst-Planck (QCPNP) model is proposed for simulating ionic currents through biological ion channels by taking into account both classical and quantum mechanical effects. A generalized Gummel algorithm is also presented for solving the model system. Compared with the experimental results of X-ray crystallography, it is shown that the quantum PNP model is more accurate than the classical model in predicting the average number of ions in the channel pore. Moreover, the electrostatic potential has been found to reach as high as 19% difference between two models around the charged vestibule which has been shown to play a significant role in the permeation of ions through ion-selective ligand-gated or voltage-activated channels. These results indicate that the QCPNP model may be considered as a more refined continuum model that can be incorporated into a multi-scale electrophysiology modeling.







Opis fizyczny




  • Department of Applied Mathematics, National Hsinchu University of Education,
    Hsinchu 300, Taiwan


  • [1] U. Ascher, P. Markowich, C. Schmeiser, H. Steinruck, and R. Weiss, Conditioning of the steady state semiconductor device problem, SIAM J. Appl. Math. 49 (1989) 165-185.
  • [2] V. Barcilon, D. P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane channels: Part II, SIAM J. Appl. Math. 53 (1992)1405-1425.
  • [3] D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables I and II, Phys. Rev., 85 (1952), pp. 166-179 and 180-93.
  • [4] F. Brezzi, L. D. Marini, and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal. 26 (1989) 1342-1355.
  • [5] M. Cai and P. C. Jordan, How does vestibule surface charge affect ion conduction and toxin binding in a sodium channel? Biophys. J. 57 (1990) 883-891.
  • [6] D. P. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J. 64 (1993) 1405-1421.
  • [7] R.-C. Chen and J.-L. Liu, An iterative method for adaptive finite element solutions of an energy transport model of semiconductor devices, J. Comput. Phys. 189 (2003) 579-606.
  • [8] R.-C. Chen and J.-L. Liu, A quantumcorrected energy-transport model for nanoscale semiconductor devices, J. Comput. Phys. 204 (2005) 131-156.
  • [9] R.-C. Chen and, J.-L. Liu, An accelerated monotone iterative method for the quantum-corrected energy transport model, J. Comp. Phys. 227 (2008) 6266-6240.
  • [10] C. de Falco, J.W. Jerome, and R. Sacco, Quantumcorrected drift-diffusion models: Solution fixed pointmap and finite element approximation, J. Comput. Phys., 228 (2009), pp. 1770-1789.
  • [11] R. Eisenberg, From structure to function in open ionic channels, J. Membr. Biol. 171 (1999) 1-24.
  • [12] R. Eisenberg, Multiple scales in the simulation of ion channels and proteins, J. Phys. Chem. C 114 (2010) 20719-20733. [WoS]
  • [13] B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis EnVarA of ions in water and channels: Field theory for primitive models of complex ionic fluids, J. Chem. Phys. 133 (2010) 104104. [WoS]
  • [14] C. L. Gardner,W. Nonner and R. S. Eisenberg, Electrodiffusion model simulation of ionic channels: 1D simulations, J. Comput. Electronics 3 (2004) 25-31.
  • [15] H. K. Gummel, A self-consistent iterative scheme for the one-dimensional steady-state transistor calculations, IEEE Trans. Elec. Dev. ED-11 (1964) 163-174.
  • [16] B. Hille, Ionic Channels of Excitable Membranes, 3rd Ed., Sinauer Associates Inc., Sunderland, MA, 2001.
  • [17] P. R. Holland, The Quantum Theory of Motion, Cambridge University Press, 1993.
  • [18] T.-L. Horng, T.-C. Lin, C. Liu, and B. Eisenberg, PNP equations with steric effects: a model of ion flow through channels, J. Phys. Chem. B 116 (2012) 11422-11441.
  • [19] M. Hoyles, S. Kuyucak, and S.-H. Chung, Energy barrier presented to ions by the vestibule of the biological membrane channel, Biophys. J. 70 (1996) 1628-1642.
  • [20] J. W. Jerome, Consistency of semiconductor modeling: An existence/stability analysis for the stationary van Roosbroeck system, SIAM J. Appl. Math. 45 (1985) 565-590.
  • [21] T. Kerkhoven, A proof of convergence of Gummel’s algorithm for realistic device geometries, SIAM J. Numer. Anal. 23 (1986) 1121-1137.
  • [22] Y. Li, J.-L. Liu, S.M. Sze, and T.-S. Chao, A new parallel adaptive finite volume method for the numerical simulation of semiconductor devices, Comput. Phys. Commun. 142 (2001) 285-289.
  • [23] J.-L. Liu, Numerical methods for the Poisson-Fermi equation in electrolytes, J. Comput. Phys. 247 (2013) 88-99.
  • [24] J.-L. Liu and B. Eisenberg, Correlated ions in a calcium channel model: a Poisson-Fermi theory, J. Phys. Chem. B 117 (2013) 12051-12058. [WoS]
  • [25] J.-L. Liu and B. Eisenberg, Analytical models of calcium binding in a calcium channel, J. Chem. Phys. 141 (2014) 075102. [WoS]
  • [26] J.-L. Liu and B. Eisenberg, Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels, J. Chem. Phys. 141 (2014) 22D532. [WoS]
  • [27] J.-L. Liu and B. Eisenberg, Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels, Phys. Rev. E 92 (2015) 012711. [WoS]
  • [28] J.-L. Liu and B. Eisenberg, Poisson-Fermi model of single ion activities in aqueous solutions, Chem. Phys. Lett. 637 (2015) 1-6. [Crossref]
  • [29] D. L. Scharfetter and H. K. Gummel, Large-signal analysis of a silicon Read diode oscillator, IEEE Trans. Elec. Dev. ED-16 (1969) 64-77.
  • [30] J. R. Silva and Y. Rudy, Multi-scale electrophysiology modeling: from atom to organ, J. Gen. Physiol. 135 (2010) 575-581. [WoS]
  • [31] J. W. Slotboom, Computer-aided two-dimensional analysis of bipolar transistors, IEEE Trans. Elec. Dev. ED-20 (1973) 669- 679.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.