Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Artykuł - szczegóły

## Open Mathematics

2017 | 15 | 1 | 304-316

## Shintani and Shimura lifts of cusp forms on certain arithmetic groups and their applications

EN

### Abstrakty

EN
For an odd and squarefree level N, Kohnen proved that there is a canonically defined subspace [...] S κ + 1 2 n e w ( N ) ⊂ S κ + 1 2 ( N ) , and S κ + 1 2 n e w ( N ) and S 2 k n e w ( N ) $S_{\kappa+\frac{1}{2}}^{\mathrm{n}\mathrm{e}\mathrm{w}}(N)\subset S_{\kappa+\frac{1}{2}}(N),\,\,{\text{and}}\,\,S_{\kappa+\frac{1}{2}}^{\mathrm{n}\mathrm{e}\mathrm{w}}(N)\,\,{\text{and}}\,\,S_{2k}^{\mathrm{n}\mathrm{e}\mathrm{w}}(N)$ are isomorphic as modules over the Hecke algebra. Later he gave a formula for the product [...] a g ( m ) a g ( n ) ¯ $a_{g}(m)\overline{a_{g}(n)}$ of two arbitrary Fourier coefficients of a Hecke eigenform g of halfintegral weight and of level 4N in terms of certain cycle integrals of the corresponding form f of integral weight. To this end he first constructed Shimura and Shintani lifts, and then combining these lifts with the multiplicity one theorem he deduced the formula in [2, Theorem 3]. In this paper we will prove that there is a Hecke equivariant isomorphism between the spaces [...] S 2 k + ( p ) and S k + 1 2 ( p ) . $S_{2k}^{+}(p)\,\,{\text{and}}\,\,\mathbb{S}_{k+\frac{1}{2}}(p).$ We will also construct Shintani and Shimura lifts for these spaces, and prove a result analogous to [2, Theorem 3].

EN

304-316

wydano
2017-01-01
otrzymano
2016-08-02
zaakceptowano
2017-01-03
online
2017-03-30

### Twórcy

autor
• Department of Mathematics Education and RINS, Gyeongsang National University, 501 Jinjudae-ro, Jinju, 660-701,
autor
• Department of Mathematics, Sungkyunkwan University, Suwon, 440-746,

### Identyfikatory JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.