EN
Let Ai ∈ B(H), (i = 1, 2, ..., n), and [...] T=[ 0 ⋯ 0 A 1 ⋮ ⋰ A 2 0 0 ⋰ ⋰ ⋮ A n 0 ⋯ 0 ] $ T = \left[ {\matrix{ 0 & \cdots & 0 & {A_1 } \cr \vdots & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {A_2 } & 0 \cr 0 & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & \vdots \cr {A_n } & 0 & \cdots & 0 \cr } } \right] $ . In this paper, we present some upper bounds and lower bounds for w(T). At the end of this paper we drive a new bound for the zeros of polynomials.