EN
We study, in a Hilbert framework, some abstract parabolic variational inequalities, governed by reflecting subgradients with multiplicative perturbation, of the following type: y´(t)+ Ay(t)+0.t Θ(t,y(t)) ∂φ(y(t))∋f(t,y(t)),y(0) = y0,t ∈[0,T] where A is a linear self-adjoint operator, ∂φ is the subdifferential operator of a proper lower semicontinuous convex function φ defined on a suitable Hilbert space, and Θ is the perturbing term which acts on the set of reflecting directions, destroying the maximal monotony of the multivalued term. We provide the existence of a solution for the above Cauchy problem. Our evolution equation is accompanied by examples which aim to (systems of) PDEs with perturbed reflection.