PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

A detailed analysis for the fundamental solution of fractional vibration equation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case of 0 < α < 1, while y(t) is ultimately negative, and ultimately increases monotonically and approaches zero for the case of 1 < α < 2. We also consider the number of zeros, the maximum zero and the maximum extreme point of the fundamental solution y(t) for specified values of the coefficients and fractional order.
Wydawca
Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-09-13
zaakceptowano
2015-10-21
online
2015-11-26
Twórcy
autor
  • School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
  • School of Sciences, Shanghai Institute of Technology, Shanghai 201418, P.R. China
Bibliografia
  • [1] B˘aleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional calculus models and numerical methods – Series on complexity,nonlinearity and chaos, World Scientific, Boston, 2012
  • [2] Gorenflo R., Mainardi F., Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A., Mainardi F.(Eds.), Fractals and fractional calculus in continuum mechanics, Springer-Verlag, Wien/New York, 1997, pp. 223-276
  • [3] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006
  • [4] Kiryakova V., Generalized fractional calculus and applications, Pitman Res. Notes in Math. Ser., Vol. 301, Longman Scientific &Technical and John Wiley & Sons, Inc., Harlow and New York, 1994
  • [5] Klafter J., Lim S.C., Metzler R., Fractional dynamics: recent advances, World Scientific, Singapore, 2011
  • [6] Mainardi F., Fractional calculus and waves in linear viscoelasticity, Imperial College, London & World Scientific, Singapore, 2010
  • [7] Miller K.S., Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993
  • [8] Oldham K.B., Spanier J., The fractional calculus, Academic Press, New York, 1974
  • [9] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999
  • [10] Rossikhin Y.A., Shitikova M.V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditarymechanisms of solids, Appl. Mech. Rev., 1997, 50, 15-67[Crossref]
  • [11] Koeller R.C., Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 1984, 51, 299-307[Crossref]
  • [12] Xu M.Y., Tan W.C., Representation of the constitutive equation of viscoelastic materials by the generalized fractional elementnetworks and its generalized solutions, Sci. China Ser. G, 2003, 46, 145-157[Crossref]
  • [13] Chen W., An intuitive study of fractional derivative modeling and fractional quantum in soft matter, J. Vib. Control, 2008, 14,1651-1657[WoS][Crossref]
  • [14] Scott-Blair G.W., Analytical and integrative aspects of the stress-strain-time problem, J. Sci. Instr., 1944, 21, 80-84
  • [15] Scott-Blair G.W., A survey of general and applied rheology, Pitman, London, 1949
  • [16] Bland D.R., The theory of linear viscoelasticity, Pergamon, Oxford, 1960
  • [17] Bagley R.L., Torvik P.J., A generalized derivative model for an elastomer damper, Shock. Vib. Bull., 1979, 49, 135-143
  • [18] Beyer H., Kempfle S., Definition of physically consistent damping laws with fractional derivatives, ZAMM Z. Angew. Math. Mech.,1995, 75, 623-635
  • [19] Achar B.N.N., Hanneken J.W., Clarke T., Response characteristics of a fractional oscillator, Physica A, 2002, 309, 275-288
  • [20] Li M., Lim S.C., Chen S., Exact solution of impulse response to a class of fractional oscillators and its stability, Math. Probl. Eng.,2011, 2011, ID 657839[WoS]
  • [21] Lim S.C., Li M., Teo L.P., Locally self-similar fractional oscillator processess, Fluct. Noise Lett., 2007, 7, L169-L179[Crossref][WoS]
  • [22] Shen Y.J., Yang S.P., Xing H.J., Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative,Acta Phys. Sinica, 2012, 61, 110505-1-6
  • [23] Shen Y., Yang S., Xing H., Gao G., Primary resonance of Duffing oscillator with fractional-order derivative, Commun. NonlinearSci. Numer. Simul., 2012, 17, 3092-3100[Crossref]
  • [24] Naber M., Linear fractionally damped oscillator, Int. J. Difference Equ., 2010, 2010, ID197020
  • [25] Wang Z.H., Du M.L., Asymptotical behavior of the solution of a SDOF linear fractionally damped vibration system, Shock Vib.,2011, 18, 257-268[WoS][Crossref]
  • [26] Li M., Lim S.C., Cattani C., Scalia M., Characteristic roots of a class of fractional oscillators, Adv. High Energy Phys., 2013, 2013,ID 853925[WoS]
  • [27] Naranjani Y., Sardahi Y., Chen Y.Q., Sun J.Q., Multi-objective optimization of distributed-order fractional damping, Commun.Nonlinear Sci. Numer. Simul., 2015, 24, 159-168[Crossref][WoS]
  • [28] Li M., Li Y.C., Leng J.X., Power-type functions of prediction error of sea level time series, Entropy, 2015, 17, 4809-4837
  • [29] Li C.P., Deng W.H., Xu D., Chaos synchronization of the Chua system with a fractional order, Physica A, 2006, 360, 171-185
  • [30] Zhang W., Liao S.K., Shimizu N., Dynamic behaviors of nonlinear fractional-order differential oscillator, J. Mech. Sci. Tech., 2009,23, 1058-1064[Crossref]
  • [31] Wang Z.H., Hu H.Y., Stability of a linear oscillator with damping force of the fractional-order derivative, Sci. China Ser. G, 2010,53, 345-352[WoS][Crossref]
  • [32] Li C., Ma Y., Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 2013, 71, 621-633[WoS]
  • [33] Yang X.J., Baleanu D., Srivastava H.M., Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl.Math. Lett., 2015, 47, 54-60[Crossref]
  • [34] Yang X.J., Srivastava H.M., An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal mediumdescribed by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 2015, 29, 499-504[Crossref][WoS]
  • [35] Yang X.J., Srivastava H.M., Cattani C., Local fractional homotopy perturbation method for solving fractal partial differentialequations arising in mathematical physics, Rom. Rep. Phys., 2015, 67, 752-761
  • [36] Yang X.J., Baleanu D., Baleanu M.C., Observing diffusion problems defined on cantor sets in different coordinate systems, Therm.Sci., 2015, 19(S1), 151-156[WoS][Crossref]
  • [37] Yan S.P., Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer, Therm. Sci.,2015, 19, S131-S135[WoS][Crossref]
  • [38] Duan J.S., Time- and space-fractional partial differential equations, J. Math. Phys., 2005, 46, 13504-13511[Crossref]
  • [39] Duan J.S., Fu S.Z., Wang Z., Fractional diffusion-wave equations on finite interval by Laplace transform, Integral Transforms Spec.Funct., 2014, 25, 220-229[WoS]
  • [40] Davies B., Integral transforms and their applications, 3rd ed., Springer-Verlag, New York, 2001
  • [41] Duan J.S., Wang Z., Fu S.Z., The zeros of the solutions of the fractional osciliation equation, Fract. Calc. Appl. Anal., 2014, 17,10-12[Crossref]
  • [42] Duan J.S., Wang Z., Liu Y.L., Qiu X., Eigenvalue problems for fractional ordinary differential equations, Chaos Solitons Fractals,2013, 46, 46-53[Crossref][WoS]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_math-2015-0077
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.