Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 13 | 1 |

Tytuł artykułu

Some properties of geodesic semi E-b-vex functions

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, we introduce a new class of function called geodesic semi E-b-vex functions and generalized geodesic semi E-b-vex functions and discuss some of their properties.

Wydawca

Czasopismo

Rocznik

Tom

13

Numer

1

Opis fizyczny

Daty

otrzymano
2015-08-04
zaakceptowano
2015-10-19
online
2015-11-06

Twórcy

  • Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
autor
  • Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia,

Bibliografia

  • [1] Boltyanski V., Martini H., Soltan P.S., Excursions into combinatorial geometry, Springer, Berlin, 1997.
  • [2] Chen X., Some properties of semi-E-convex functions, Journal of Mathematical Analysis and Applications, 2002, 275, 251–262.
  • [3] Danzer L., Grünbaum B., Klee V., Helly’s theorem and its relatives. In: V. Klee (ed.) Convexity, Proc. Sympos. Pure Math., 1963, 7, 101–180.
  • [4] Duca D. I., Lupsa L., On the E-epigraph of an E-convex functions,Journal of Optimization Theory and Applications, 2006, 129, 341–348.
  • [5] Fulga C., Preda V., Nonlinear programming with E-preinvex and local E-preinvex functions, European Journal of Operational Research, 2009, 192(3), 737–743. [WoS]
  • [6] Iqbal A.,Ahmad I., Ali S., Some properties of geodesic semi-E-convex functions, Nonlinear Analysis: Theory, Method and Application,2011, 74(17), 6805–6813.
  • [7] Iqbal A., Ali S., Ahmad I., On geodesic E-convex sets, geodesic E-convex functions and E-epigraphs, J.Optim Theory Appl., 2012, 55(1), 239–251. [WoS]
  • [8] Jiménez M. A., Garzón G.R., Lizana A.R, Optimality conditions in vector optimization, Bentham Science Publishers, 2010.
  • [9] Kiliçman A., Saleh W., A note on starshaped sets in2-dimensional manifolds without conjugate points, Journal of Function Spaces, 2014, 2014(3), Article ID 675735. [WoS]
  • [10] Kiliçman A., Saleh W., On Geodesic Strongly E-convex Sets and Geodesic Strongly E-convex Functions, Journal of Inequalities and Applications, 2015, 2015(1), 1–10.
  • [11] Martini H., Swanepoel K.J., Generalized convexity notions and combinatorial geometry, Gongr. Numer., 2003, 164, 65–93.
  • [12] Martini H., Swanepoel K.J , The geometry of minkowski spaces- a survey, part ii, Expo. Math., 2004, 22,14–93.
  • [13] Mishra S.K., Mohapatra R.N. and Youness E.A.,Some properties of semi E–b-vex functions, Applied Mathematics and Computation, 2011,217(12), 5525–5530.
  • [14] Rapcsak T., Smooth Nonlinear Optimizatio in Rn, Kluwer Academic, 1997.
  • [15] Roman J. Dwilewiez, A short History of Convexity, Differential Geometry Dynamical Systems, 2009, 11, 112–129.
  • [16] Saleh W., Kiliçman A., On generalized s-convex functions on fractal sets, JP Journal of Geometry and Topology, 2015, 17(1), 63–82.
  • [17] Syau Y. R., Lee E.S., Some properties of E-convex functions, Applied Mathematics Letters, 2005,18, 1074–1080. [Crossref]
  • [18] Udrist C., Convex Funcions and Optimization Methods on Riemannian Manifolds, Kluwer Academic, 1994.
  • [19] Valentine F. M., Convex Subsets, McGraw-Hill Series Higher Math., McGraw-Hill, New York, 1964.
  • [20] Yang X. M., On E-convex set, E-convex functions and E-convex programming, Journal of Optimization Theory and Applications, 2001, 109, 699–703.
  • [21] Youness E. A., E-convex set, E-convex functions and E-convex programming, Journal of Optimization Theory and Applications, 1999, 102, 439–450.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_1515_math-2015-0074
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.