PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Module Connes amenability of hypergroup measure algebras

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We define the concept of module Connes amenability for dual Banach algebras which are also Banach modules with a compatible action. We distinguish a closed subhypergroup K0 of a locally compact measured hypergroup K, and show that, under different actions, amenability of K, M.K0/-module Connes amenability of M.K/, and existence of a normal M.K0/-module virtual diagonal are related.
Wydawca
Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2015-01-15
zaakceptowano
2015-10-14
online
2015-10-28
Twórcy
  • Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares
    University, P.O.Box 14115-134, Tehran , Iran
Bibliografia
  • [1] Runde, V., Amenability for dual Banach algebras, Studia Math., 2001, 148, 47-66.
  • [2] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras, J. London Math. Soc., 2003, 67, 643-656.[Crossref]
  • [3] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras II, Bull. Austral. Math. Soc., 2003, 68,325-328.[Crossref]
  • [4] Runde, V., Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math.Scand., 2004, 95, 124-144.
  • [5] Johnson, B.E., Kadison, R.V., Ringrose, J., Cohomology of operator algebras III, Bull. Soc. Math. France, 1972, 100, 73-79.
  • [6] Jewett, R.I., Spaces with an abstract convolution of measures, Advances in Math., 1975, 18, 1-110.
  • [7] Bloom, W.R., Heyer, H., Harmonic Analysis of Probability Measures on Hypergroups, Walter de Gruyter, Berlin, 1995.
  • [8] Amini, M., Module amenability for semigroup algebras, Semigroup Forum, 2004, 69, 243-254.
  • [9] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Func. Anal., 1967, 1, 443-491.
  • [10] Daws, M., Dual Banach algebras: representations and injectivity, Studia Math., 2007, 178(3), 231-275.
  • [11] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer-Verlag, London, 2002.
  • [12] Corach, G., Galé, J. E., Averaging with virtual diagonals and geometry of representations. In: Banach algebras ’97, Walter deGrutyer, Berlin, 87-100, 1998.
  • [13] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 1951, 71, 152-182.
  • [14] T. H. Koornwinder, Alan L. Schwartz, Product formulas and associated hypergroups for orthogonal polynomials on the simplexand on a parabolic biangle, Constr. Approx., 1997, 13, 537-567.[Crossref]
  • [15] Grothendieck, A., Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math., 1953, 74, 168-186.[Crossref]
  • [16] M. Skantharajah, Amenable hypergroups, Illinois J. Math., 1992, 36(1), 15-46.
  • [17] Johnson, B.E., Separate continuity and measurability, Proc. Amer. Math. Soc., 1969, 20, 420-422.[Crossref]
  • [18] Lasser, R., Amenability and weak amenability of `1-algebras of polynomial hypergroups, Studia Math., 2007, 182, 183-196.
  • [19] Lasser, R., Various amenability properties of the L1-algebra of polynomial hypergroups and applications, J. Comput. Appl. Math.,2009, 233, 786-792.[WoS]
  • [20] Amini, M., Bodaghi, A., Ebrahimi Bagha, D., Module amenability of the second dual and module topological center of semigroupalgebras, Semigroup Forum, 2010, 80, 302-312.[Crossref][WoS]
  • [21] Runde V., Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin, 2002.
  • [22] Doran, R.S., Wichman, J., Approximate Identities and Factorization in Banach Modules, Lecture Notes in Mathematics 768,Springer-Verlag, Berlin, 1979.
  • [23] Lasser, R., Orthogonal polynomials and hypergroups, Rend. Mat., 1983, 3, 185-209.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_1515_math-2015-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.